Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1867-1875    DOI: 10.3785/j.issn.1008-973X.2022.09.020
机械工程     
基于模型参考自适应的AGV运动控制系统设计
龚辉1(),方强2,*(),李国强1,郑晓峰1,祝勇仁1
1. 浙江机电职业技术学院 智能制造学院,浙江 杭州 310053
2. 浙江大学 流体传动及控制国家重点实验室,浙江 杭州 310027
Design of AGV motion control system based on model reference adaptive method
Hui GONG1(),Qiang FANG2,*(),Guo-qiang LI1,Xiao-feng ZHENG1,Yong-ren ZHU1
1. School of Intelligent Manufacturing, Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou 310053, China
2. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2028 KB)   HTML
摘要:

为了消除自动导航车(AGV)麦克纳姆驱动轮间负载不均衡引起的控制系统不确定性问题,提出基于模型参考自适应控制(MRAC)的伺服控制方法. 建立驱动轮伺服电机的数学模型,根据李雅普诺夫稳定理论求解MRAC控制律和自适应律,并确定自适应律算法的正定矩阵. 根据AGV实际运行过程中伺服电机的频率特性,引入低通滤波器. 综合AGV定位精度和MRAC系统稳定性,确定二阶巴特沃兹低通滤波器的截止频率. 在保证控制系统稳态精度的同时,有效抑制高频振荡. 实验结果表明:基于MRAC的AGV在复杂工况下的控制性能保持了较高的稳定性,每个电机的速度波动不超过3%,定位精度误差小于3.6 mm.

关键词: 自动导航车(AGV)麦克纳姆轮模型参考自适应控制(MRAC)低通滤波器    
Abstract:

A servo control method based on model reference adaptive control (MRAC) was proposed, to eliminate the control system uncertainty which was caused by the unbalanced load between the Mecanum wheels of the automated guided vehicle (AGV) system. The mathematical model of the driving wheel servo motor was established. The control law and adaptive law of MRAC were acquired by Lyapunov method, and the positive definite matrix of the adaptive law was determined. According to the frequency characteristics of the servo motor during the operation of the AGV, a low-pass filter was introduced. The cut-off frequency of the second-order Butterworth low-pass filter was determined by the positioning accuracy of the AGV and the stability of the MRAC system. The high frequency oscillation of the control system was effectively suppressed and the high steady-state accuracy was achieved. Experimental results show that the control performance of the AGV based on MRAC achieves a high stability under complex working conditions. The speed error of each motor is controlled within 3%, and the positioning accuracy error is less than 3.6 mm.

Key words: automated guided vehicle (AGV)    Mecanum wheel    model reference adaptive control (MRAC)    low-pass filter
收稿日期: 2021-09-23 出版日期: 2022-09-28
CLC:  TP 273  
基金资助: 国家自然科学基金资助项目(51975519); 浙江机电职业技术学院2021年度校级科教融合孵化课题(A-0271-21-016)
通讯作者: 方强     E-mail: gonghui@zime.edu.cn;fangqiang@zju.edu.cn
作者简介: 龚辉(1987—) 男,讲师,从事机电一体化控制研究. orcid.org/0000-0002-0801-7144. E-mail: gonghui@zime.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
龚辉
方强
李国强
郑晓峰
祝勇仁

引用本文:

龚辉,方强,李国强,郑晓峰,祝勇仁. 基于模型参考自适应的AGV运动控制系统设计[J]. 浙江大学学报(工学版), 2022, 56(9): 1867-1875.

Hui GONG,Qiang FANG,Guo-qiang LI,Xiao-feng ZHENG,Yong-ren ZHU. Design of AGV motion control system based on model reference adaptive method. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1867-1875.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.020        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1867

图 1  麦克纳姆轮AGV
图 2  麦克纳姆轮AGV控制系统
图 3  模型参考自适应控制原理
参数 数值 参数 数值
i 50 J1/(kg·m2) 5.93×10?4
D/mm 425 J2/(kg·m2) 7.23×10?4
Kc/(V·A) 31.416 Ke/(V·s) 4.24
τc/ms 0.725 L/mH 3.47
Ki 30 R 18.5
τi /ms 0.5 np 10
表 1  AGV驱动系统运动模型参数
图 4  采用模型参考自适应控制的电机位移特性
图 5  麦克纳姆轮分布形式
图 6  AGV运行路径与路面状况
图 7  AGV 4组电机的运行电流
图 8  单轴电机阶跃信号响应
图 9  不同AGV平移速度时驱动电机的响应速度
图 10  4组电机在AGV平移速度100 mm/s时的自适应参数调整曲线
mm
Pt Pa Pt Pa Pt Pa
0 0.02 4 000 4 001.24 8 000 8 002.89
1 000 1 000.69 5 000 5 001.77 9 000 9 003.12
2 000 2 000.75 6 000 6 002.21 10 000 10 003.51
3 000 3 000.96 7 000 7 002.22 —— ——
表 2  采用模型参考自适应控制的AGV停车精度测试结果
图 11  采用模型参考自适应控制的AGV定位误差测试结果
1 朱磊磊, 陈军 轮式移动机器人研究综述[J]. 机床与液压, 2009, 37 (8): 242- 247
ZHU Lei-lei, CHEN Jun A review of wheeled mobile robots[J]. Machine Tool and Hydraulics, 2009, 37 (8): 242- 247
doi: 10.3969/j.issn.1001-3881.2009.08.079
2 YOON S W, PARK S B, KIM J S, et al Kalman filter sensor fusion for Mecanum wheeled automated guided vehicle localization[J]. Journal of Sensors, 2015, 347379
3 王明明, 朱莹莹, 张磊, 等 麦克纳姆轮驱动的移动机器人自适应滑模控制器设计[J]. 西北工业大学学报, 2018, 36 (4): 627- 635
WANG Ming-ming, ZHU Ying-ying, ZHANG Lei, et al Design of adaptive sliding mode controller for mobile robot driven by Mecanum[J]. Journal of Northwestern Polytechnical University, 2018, 36 (4): 627- 635
doi: 10.3969/j.issn.1000-2758.2018.04.004
4 KIM J M, WOO S B, KIM J Y, et al Inertial navigation system for an automatic guided vehicle with Mecanum wheels[J]. International Journal of Precision Engineering and manufacturing, 2012, 13 (3): 379- 386
doi: 10.1007/s12541-012-0048-9
5 GFRERRER A Geometry and kinematics of the Mecanum wheel[J]. Computer Aided Geometric Design, 2008, 25 (9): 784- 791
doi: 10.1016/j.cagd.2008.07.008
6 张星. 基于麦克纳姆轮的全向AGV运动控制技术研究[D]. 重庆: 重庆大学, 2016: 5-6.
ZHANG Xing. Research on omnidirectional AGV motion control technology based on Mecanum wheel [D]. Chongqing: Chongqing University, 2016: 5-6.
7 郑炳坤, 赖乙宗, 叶峰 磁导航AGV控制系统的设计与实现[J]. 自动化与仪表, 2014, 29 (3): 6- 10
ZHENG Bing-kun, LAI Yi-zong, YE Feng Design and implementation of the magnetic navigation AGV control system[J]. Automation and Instrumentation, 2014, 29 (3): 6- 10
doi: 10.3969/j.issn.1001-9944.2014.03.002
8 DOUDOU S, KHABER F Robust adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems with unknown control directions[J]. Transactions of the Institute of Measurement and Control, 2021, 43 (14): 3103- 3119
doi: 10.1177/01423312211015114
9 刘国荣 模型参考模糊自适应控制[J]. 控制理论与应用, 1996, 13 (1): 92- 97
LIU Guo-rong Model reference fuzzy adaptive control[J]. Control Theory and Applications, 1996, 13 (1): 92- 97
10 张兴华 永磁同步电机的模型参考自适应反步控制[J]. 控制与决策, 2008, 23 (3): 341- 345
ZHANG Xing-hua Model reference adaptive backstepping control of permanent magnet synchronous motors[J]. Control and Decision, 2008, 23 (3): 341- 345
doi: 10.3321/j.issn:1001-0920.2008.03.022
11 GAO Q Z, XIE X J Robustness analysis of discrete-time indirect model reference adaptive control with normalized adaptive laws[J]. International Journal of Automation and Computing, 2010, 7 (3): 381- 388
doi: 10.1007/s11633-010-0518-4
12 PIIPPO A, HINKKANEN M, LUOMI J Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (2): 570- 576
doi: 10.1109/TIE.2007.911949
13 王庆龙, 张兴, 张崇巍 永磁同步电机矢量控制双滑模模型参考自适应系统转速辨识[J]. 中国电机工程学报, 2014, 34 (6): 897- 902
WANG Qing-long, ZHANG Xing, ZHANG Chong-wei Double sliding-mode model reference adaptive system speed identification for vector control of permanent magnet synchronous motors[J]. Proceeding of the CSEE, 2014, 34 (6): 897- 902
doi: 10.13334/j.0258-8013.pcsee.2014.06.010
14 ANDERSON R B, MARSHALL J A, L'AFFLITTO A Novel model reference adaptive control laws for improved transient dynamics and guaranteed saturation constraints[J]. Journal of the Franklin Institute, 2021, 358 (12): 6281- 6308
doi: 10.1016/j.jfranklin.2021.06.020
15 KAMALIFAR A, MENHAJ M B, MONFARED M N, et al Design of robust model reference adaptive controller for a wider class of nonlinear systems[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2022, 46: 127- 139
doi: 10.1007/s40998-021-00451-8
16 MISHRA P K, AGRAWAL P, DHAR N K, et al. On adaptive control for AGV with vision sensor as an unknown nonlinear system [M]// VERMA N, GHOSH A. Computational intelligence: theories, applications and future directions-volume Ⅱ. Advances in intelligent systems and computing. [S.l.]: Springer, 2018: 265-277.
17 NGUYEN N T. Model-reference adaptive control: a primer [M]. [S. l.]: Springer, 2018: 65-70.
18 方强, 陈利鹏, 费少华, 等 定位器模型参考自适应控制系统设计[J]. 浙江大学学报:工学版, 2013, 47 (12): 2234- 2242
FANG Qiang, CHEN Li-peng, FEI Shao-hua, et al Model reference adaptive control system design of localizer[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (12): 2234- 2242
19 SAHHARY B, SIEMENS, MA Z X, et al Sensorless speed control of PMSM based on MRAC using active power[J]. European Power Electronics and Drives, 2015, 25 (2): 19- 25
20 施丽婷, 黄筱调, 杨勇 数控交流伺服系统三环整定及应用[J]. 南京工业大学学报: 自然科学版, 2006, 28 (4): 36- 40
SHI Li-ting, HUANG Xiao-tiao, YANG Yong Parameter tuning and application of the three loops in a NC servo system[J]. Journal of Nanjing University of Technology: Natural Science Edition, 2006, 28 (4): 36- 40
21 HU H Q, SHI W F Modeling and simulation of all-electric propulsion system with three-closed loop control[J]. Journal of Computational Methods in Sciences and Engineering, 2021, 21 (1): 109- 123
doi: 10.3233/JCM-204432
22 解小刚, 陈进 采用id=0的永磁同步电机矢量控制系统MATLAB/Simulink仿真 [J]. 新型工业化, 2016, 6 (5): 47- 54
XIE Xiao-gang, CHEN Jin Vector control with id=0 simulation of PMSM based on MATLAB/Simulink [J]. The Journal of New Industrialization, 2016, 6 (5): 47- 54
23 张宇, 李岱若 某型运动平台三环控制系统设计与仿真[J]. 现代雷达, 2020, 42 (3): 57- 62
ZHANG Yu, LI Dai-ruo Design and simulation of a three-loop control system for a certain motion control[J]. Modern Rader, 2020, 42 (3): 57- 62
24 WILLIAM A, TAYLOR F. Electronic filter design handbook [M]. 4th ed. New York City: McGraw-Hill, 2006: 30-33.
[1] 冯霞,钟晓剑,徐群伟,陈国柱. 新型三相四线制APF直流电压控制策略[J]. 浙江大学学报(工学版), 2014, 48(7): 1312-1317.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 白杨, 杨家强, 曾争. 谐波检测算法中高性能数字低通滤波器的设计[J]. J4, 2013, 47(1): 169-173.
[4] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[5] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.
[6] 王波, 郭吉丰. 基于低通滤波的新型超声波电机控制系统[J]. J4, 2011, 45(1): 157-162.
[7] 王立乔 林平 刘兆燊 张仲超. 基于统一模型的谐波及无功电流检测[J]. J4, 2005, 39(5): 691-695.