Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (4): 713-723    DOI: 10.3785/j.issn.1008-973X.2019.04.012
土木工程、海洋工程     
地下水渗流对悬挂式止水帷幕基坑变形影响
何绍衡1(),夏唐代1,*(),李连祥2,于丙琪1,刘泽勇1
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 山东大学 土建与水利学院,山东 济南 250061
Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains
Shao-heng HE1(),Tang-dai XIA1,*(),Lian-xiang LI2,Bing-qi YU1,Ze-yong LIU1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. School of Civil and Hydraulic Engineering, Shandong University, Jinan 250061, China
 全文: PDF(2086 KB)   HTML
摘要:

以某透水性土层较深的悬挂式止水帷幕基坑为背景,采用ABAQUS建立考虑分级降水开挖全过程的三维流固耦合模型,研究降水对于基坑变形发展的影响规律和不利因素,分析开挖前预降水深度、止水帷幕深度对基坑变形性状的影响. 研究表明:渗流与开挖支护具有明显的耦合效应,降水引起的围护结构侧移增量模式随开挖和支撑施作情况不同而差异较大,降水引起的地表沉降是由土体固结和渗流引起的围护结构侧移引发的地表沉降组成;地表沉降影响范围较经验预测值明显偏大,在基坑西侧地表沉降最大点,降水施工期累积产生的沉降约占48%;各级降水中第1级降水对基坑变形最不利,围护结构初始侧移随第1级降水深度的增加而快速增长,使得竣工后的最大围护结构侧移和坑外地表沉降呈指数增长;止水帷幕对于减少坑外水位下降和控制地表沉降有显著作用,随着帷幕深度的增加,地表最大沉降和沉降影响范围降低,存在最优止水帷幕深度使得帷幕超过最优深度后地表沉降趋于稳定.

关键词: 悬挂式止水帷幕有限元分析渗流基坑变形基坑开挖前预降水    
Abstract:

Taking the deep foundation pit with a suspended impervious curtain as an example, ABAQUS was used to establish the three-dimensional fluid-solid coupling model considering the whole process of grading precipitation and excavation in order to analyze the influence and unfavorable factors of precipitation on the deformation of the foundation pit. Then the depth of first-stage precipitation and the impervious curtain were analyzed. Results show that seepage and excavation support have coupling effects. The lateral displacement increment of support piles caused by precipitation varies with the conditions of excavation support. The ground settlement caused by precipitation is influenced by soil consolidation and the lateral displacement of support piles caused by precipitation. The scope of ground settlement is larger than that of empirical prediction, and precipitation-induced settlement accounts for 48% at the maximum point of settlement. The first-stage precipitation is the most unfavorable to the foundation pit of all stages of precipitation. The initial lateral displacement of support piles increases rapidly with the increase of the first-stage precipitation depth, so that the growth of the final maximum lateral displacement of support piles and ground settlement is exponential. The impervious curtain can effectively reduce the water level outside the foundation pit drop and control ground settlement. The maximum ground settlement and the scope of ground settlement decrease as the depth of the impervious curtain increases. There is an optimal curtain depth which makes ground settlement stabilize after the curtain depth exceeds the optimal depth.

Key words: suspended impervious curtain    finite element analysis    seepage    foundation pit deformation    precipitation before foundation pit excavation
收稿日期: 2018-03-28 出版日期: 2019-03-28
CLC:  TU 111  
通讯作者: 夏唐代     E-mail: heshaoheng@zju.edu.cn;xtd@zju.edu.cn
作者简介: 何绍衡(1995—),男,硕士生,从事基坑工程的研究. orcid.org/0000-0001-7883-971X. E-mail: heshaoheng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何绍衡
夏唐代
李连祥
于丙琪
刘泽勇

引用本文:

何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.

Shao-heng HE,Tang-dai XIA,Lian-xiang LI,Bing-qi YU,Ze-yong LIU. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 713-723.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.04.012        http://www.zjujournals.com/eng/CN/Y2019/V53/I4/713

图 1  典型地质剖面图
图 2  基坑支护设计剖面图
层号 土性 d/m γ/(kN·m?3) κ/10?3 λ/10?2 eN μ M e0 k/(10?3cm·s?1
杂填土 0~3.5 19.4 9.00 7.70 1.34 0.35 0.57 0.79 8.00
粉质黏土 3.5~7.5/10.5~20 19.8 5.30 4.50 1.19 0.32 0.98 0.69 0.05
1 粗砂(少量圆砾) 7.5~10.5 19.5 0.34 0.29 1.12 0.29 1.41 0.65 40
中砂 20~24 20.0 2.60 2.20 1.08 0.30 1.20 0.61 30
粉土 24~33 19.9 3.90 3.30 1.14 0.32 1.11 0.68 0.90
粉质黏土 33~50 20.1 4.00 3.40 1.15 0.32 0.90 0.66 5.00×10?4
表 1  基坑三维流固耦合模型土层参数
图 3  基坑模型有限元网格
工况 模拟施工内容
工况0 施工钻孔灌注桩和止水帷幕,初始地应力平衡
工况1 基坑降水至?3.5 m(6天)
工况2 基坑开挖至?3.0 m,施作第一道预应力锚杆(9天)
工况3 基坑降水至?6.5 m(6天)
工况4 基坑开挖至?6.0 m,施作第二道预应力锚杆(9天)
工况5 基坑降水至?9.5 m(6天)
工况6 基坑开挖至?9.0 m,施作第三道预应力锚杆(9天)
工况7 基坑降水至?13.0 m(6天)
工况8 基坑开挖至?12.5 m(10天)
表 2  基坑开挖全过程施工工况
图 4  悬挂式止水帷幕基坑渗流场
图 5  地表沉降数值计算结果与经验预测和实测值对比
图 7  分级降水开挖引起的支护桩侧移增量
图 6  基坑开挖过程支护体系放大150倍变形云图
图 8  基坑降水开挖过程桩身弯矩曲线
图 9  基坑降水开挖过程竖向位移等值线图
图 10  基坑降水开挖过程地表沉降
图 11  各级降水、开挖施工期产生地表沉降占总沉降的百分比
图 12  Hd与δd、δm、δs的关系
图 13  降水稳定后基坑外降水漏斗曲线
图 15  地表最大沉降随悬挂式止水帷幕深度的变化规律
图 14  不同帷幕深度下基坑地表沉降和沉降影响区
1 应宏伟, 章丽莎, 谢康和, 等 坑外地下水位波动引起的基坑水土压力响应[J]. 浙江大学学报: 工学版, 2014, 48 (3): 492- 497
YING Hong-wei, ZHANG Li-sha, XIE Kang-he, et al Pore and earth pressure response to groundwater fluctuation out of foundation pit[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (3): 492- 497
2 LIU G B, NG C W W, WANG Z W Observed performance of a deep multistrutted excavation in Shanghai soft clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (8): 1004- 1013
3 施成华, 彭立敏 基坑开挖及降水引起的地表沉降预测[J]. 土木工程学报, 2006, 39 (5): 117- 121
SHI Cheng-hua, PENG Li-min Ground surface settlement caused by foundation pit excavation and dewatering[J]. China Civil Engineering Journal, 2006, 39 (5): 117- 121
4 冯怀平, 张伏光, 岳祖润 考虑流固耦合作用的深基坑有限元分析[J]. 地下空间与工程学报, 2012, 8 (2): 286- 291
FENG Huai-ping, ZHANG Fu-guang, YUE Zu-run Numerical analysis of excavation considering the coupling of seepage field and stress field[J]. Chinese Journal of Underground Space and Engineering, 2012, 8 (2): 286- 291
5 张小伟, 姚笑青 基坑工程变形的渗流应力耦合有限元分析[J]. 地下空间与工程学报, 2012, 08 (2): 339- 344
ZHANG Xiao-wei, YAO Xiao-qing The seepage-stress coupled finite element analysis of foundation pit deformation[J]. Chinese Journal of Underground Space and Engineering, 2012, 08 (2): 339- 344
6 郑刚, 曾超峰 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35 (12): 2153- 2163
ZHENG Gang, ZENG Chao-feng Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (12): 2153- 2163
7 马少坤, 邵羽, 黄艳珍 基于孔隙比和渗透系数与深度相关的深基坑开挖变形分析[J]. 岩土工程学报, 2013, 35 (Suppl. 2): 940- 944
MA Shao-kun, SHAO Yu, HUANG Yan-zhen Deformation of deep foundation pits due to excavation considering change of void ratio and permeability coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (Suppl. 2): 940- 944
8 曹力桥 软土地区深基坑开挖坑底隆起的有限元分析[J]. 岩土工程学报, 2013, 35 (增2): 819- 824
CAO Li-qiao Finite element method analysis of bottom upheaval of deep foundation pits in soft-clay ground due to excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (增2): 819- 824
9 BIOT M A Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics, 1954, 26 (2): 182- 191
10 周火垚, 王华钦, 张维泉. 悬挂式止水在基坑工程中的应用[J]. 岩土工程学报, 2012, 34(增刊): 470–473.
ZHOU Huo-yao, WANG Hua-qin, ZHANG Wei-quan. Application of pensile impervious curtain to excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Suppl.): 470–473.
11 曹净, 汪尺, 张丙军, 等 成层土条件下坑底无可靠隔水层基坑渗流量分析[J]. 水动力学研究与进展, 2016, 31 (1): 83- 89
CAO Jing, WANG Chi, ZHANG Bing-jun, et al Seepage discharge analysis of soil layers of soil layers pit on no reliable impermeable layer[J]. Chinese Journal of Hydrodynamics, 2016, 31 (1): 83- 89
12 高旭, 郭建波, 晏鄂川 考虑止水帷幕的深基坑降水预测解析计算[J]. 岩土力学, 2018, 39 (4): 1- 9
GAO Xu, GUO Jian-bo, YAN E-chuan Dewatering forecast of deep foundation pit considering waterproof curtain using analytic approach[J]. Rock and Soil Mechanics, 2018, 39 (4): 1- 9
13 张惠忠, 刘明建 上海软土中的" 微承压水”与基坑工程[J]. 岩土工程学报, 2005, 27 (8): 944- 947
ZHANG Hui-zhong, LIU Ming-jian ‘Feeble confined water’ in Shanghai area and related geotechnical engineering problems in foundation excavation[J]. Chinese Jounal of Geotechnical Engineering, 2005, 27 (8): 944- 947
14 关云飞, 高峰, 赵维炳, 等 ANSYS软件中修正剑桥模型的二次开发[J]. 岩土力学, 2010, 31 (3): 976- 980
GUAN Yun-fei, GAO Feng, ZHAO Wei-bing, et al Secondary development of modified cambridge model in ANSYS software[J]. Rock and Soil Mechanics, 2010, 31 (3): 976- 980
15 CASⅡMAN P M, PREENS M. Groundwater lowering in construction: a practical guide to dewatering [M]. 2nd ed. Boca Raton: CRC Press, 2012.
16 王晓伟, 童华炜 考虑深基坑坑角效应的支护结构变形计算[J]. 地下空间与工程学报, 2011, 7 (3): 479- 484
WANG Xiao-wei, TONG Hua-wei Deformation calculation of supporting structure considering deep excavation pit corner[J]. Chinese Journal of Underground Space and Engineering, 2011, 7 (3): 479- 484
17 刘国彬, 王卫东. 基坑工程手册[M]. 2版. 北京: 中国建筑工业出版社, 2009: 226.
18 OU C Y, SHIAU B Y Analysis of the corner effect on excavation behaviors[J]. Canadian Geotechnical Journal, 1998, 35 (3): 532- 540
19 刘丰敏. 考虑初始水力坡度和层间补给的降水引起地面沉降研究[D]. 北京: 中国建筑科学研究院, 2016: 117.
20 曾超峰, 薛秀丽, 郑刚 软土地基渗透性条件对基坑降水过程中支护墙侧移的影响研究[J]. 岩土力学, 2017, 38 (10): 1- 9
ZENG Chao-feng, XUE Xiu-li, ZHENG Gang Effect of soil permeability on wall deflection during pre-excavation dewatering in soft ground[J]. Rock and Soil Mechanics, 2017, 38 (10): 1- 9
21 徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007: 35.
22 HSIEH P G, OU C Y Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35 (6): 1004- 1017
23 李方明, 陈国兴 江漫滩悬挂式止水帷幕基坑地表沉降变形研究[J]. 隧道建设, 2018, 38 (1): 33- 40
LI Fang-ming, CHEN Guo-xing Study of ground settlement of foundation pit with suspended waterproof curtain in Yangtze River floodplain[J]. Tunnel Construction, 2018, 38 (1): 33- 40
24 吴意谦, 朱彦鹏 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报: 工学版, 2016, 50 (11): 2188- 2197
WU Yi-qian, ZHU Yan-peng Improved calculation of settlement due to dewatering of foundation pits in phreatic aquifer[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (11): 2188- 2197
25 康志军, 谭勇, 李想, 等 基坑围护结构最大侧移深度对周边环境的影响[J]. 岩土力学, 2016, 37 (10): 2909- 2914
KANG Zhi-jun, TAN Yong, LI Xiang, et al Influences of depth of maximum lateral deflection of excavation support on adjacent environment[J]. Rock and Soil Mechanics, 2016, 37 (10): 2909- 2914
[1] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[2] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[3] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[4] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[5] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[6] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[7] 童水光,苗嘉智,童哲铭,何顺,相曙锋,帅向辉. 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报(工学版), 2019, 53(9): 1637-1646.
[8] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[9] 潘以恒, 罗其奇, 周斌, 陈建平. 半无限平面含注浆圈深埋隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(6): 1114-1122.
[10] 庄妍, 程欣婷, 肖衡林, 刘奂孜, 周倍合, 李嘉俊. 桩承式路堤中加筋褥垫层的工作性状[J]. 浙江大学学报(工学版), 2018, 52(12): 2279-2284.
[11] 李林毅, 阳军生, 张峥, 麻彦娜, 张聪, 包德勇. 深埋式中心水沟排水隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(11): 2050-2057.
[12] 夏永强, 肖南. T形钢连接梁柱半刚性节点初始转动刚度计算公式[J]. 浙江大学学报(工学版), 2018, 52(10): 1935-1942.
[13] 李卓峰, 林伟岸, 朱瑶宏, 边学成, 叶俊能, 高飞, 陈云敏. 坑底加固控制地铁基坑开挖引起土体位移的现场测试与分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1475-1481.
[14] 王幸, 徐武, 张晓晶, 张丽娜, 胡本润. TC4板冷挤压强化寿命预测与试验验证[J]. 浙江大学学报(工学版), 2017, 51(8): 1610-1618.
[15] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960.