Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (4): 489-497    DOI: 10.3785/j.issn.1008-9497.2022.04.013
环境科学     
活性炭吸附饮用水中三卤甲烷的实验研究
贺斯佳,张硕,孙昊,郭庆龄,翁琦辉,杨岳平()
浙江大学 环境与资源学院,浙江 杭州 310058
Experimental study on adsorption of trihalomethane in drinking water by activated carbon
Sijia HE,Shuo ZHANG,Hao SUN,Qingling GUO,Qihui WENG,Yueping YANG()
College of Environment and Resource Science,Zhejiang University,Hangzhou 310058,China
 全文: PDF(3173 KB)   HTML( 2 )
摘要:

采用活性炭吸附方法控制饮用水中的三卤甲烷(THMs)。对筛选的活性炭进行动态和静态吸附实验。在ACL1,ACL2,ACY,ACM 4种活性炭中,椰壳活性炭ACL1对THMs的平衡吸附量最高;吸附行为更符合Freundlich经验模型。静态吸附实验结果表明,前1 h ACL1对THMs的吸附效率较高,4 h内达到吸附平衡,当温度为27~36 ℃时,温度变化对活性炭吸附THMs的影响较小;当THMs的初始浓度为200 μg·L-1时,ACL1对THMs的去除率大于90%;ACL1对THMs的吸附效率依次为CHBr3>CHClBr2>CHCl2Br>CHCl3。动态吸附实验结果表明,当进水的THMs浓度为200 μg·L-1时,出水THMs达到《生活饮用水卫生标准》(GB5749—2006)所需的最大吸附时长分别为:CHCl3 8.1 h,CHCl2Br 15.3 h,CHClBr2 15.6 h,CHBr3 16.5 h。

关键词: 椰壳活性炭三卤甲烷饮用水吸附    
Abstract:

To control the amount of trihalomethane (THMs) in drinking water, this study employs activated carbon as adsorbent to adsorb THMs. Experimental results show that coconut shell activated carbon ACL1 has higher equilibrium adsorption capacity for THMs. The static adsorption test showed that activated carbon ACL1 presented higher adsorption efficiency for THMs within 1 hour, and reached adsorption equilibrium within 4 h. It was found that, the temperature had little effect on the adsorption of THMs by activated carbon within the range of 27?36 ℃; When the initial concentration of THMs was twice the limit value of national standard, the removal rate of THMs was higher than 90%. The best adsorption effect of coconut shell activated carbon ACL1 was on CHCl3, followed by CHCl2Br, CHClBr2 and CHBr3. The results of dynamic adsorption test showed that when the influent concentration of THMs were 200 μg·L-1, the removal efficiency of THMs by the advanced treatment process meet the requirements of sanitary standard for drinking water (GB5749-2006). The adsorption effect of CHCl3, CHCl2Br, CHClBr2 and CHBr3 was consistent with the static adsorption test. The maximum adsorption time was 8.1, 15.3, 15.6 and 16.5 h, respectively.

Key words: coconut shell activated carbon    THMs    drinking water    adsorption
收稿日期: 2020-10-29 出版日期: 2022-07-13
CLC:  X 52  
通讯作者: 杨岳平     E-mail: yyuep@zju.edu.cn
作者简介: 贺斯佳(1996—),ORCID:https://orcid.org/0000-0003-0661-6925,女,硕士研究生,主要从事海水淡化及饮用水安全研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贺斯佳
张硕
孙昊
郭庆龄
翁琦辉
杨岳平

引用本文:

贺斯佳,张硕,孙昊,郭庆龄,翁琦辉,杨岳平. 活性炭吸附饮用水中三卤甲烷的实验研究[J]. 浙江大学学报(理学版), 2022, 49(4): 489-497.

Sijia HE,Shuo ZHANG,Hao SUN,Qingling GUO,Qihui WENG,Yueping YANG. Experimental study on adsorption of trihalomethane in drinking water by activated carbon. Journal of Zhejiang University (Science Edition), 2022, 49(4): 489-497.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.04.013        https://www.zjujournals.com/sci/CN/Y2022/V49/I4/489

活性炭ACL1ACYACL2ACM
材质椰壳椰壳果壳木质
灰分/%≤30.5~5≤32~6
含水率/%3.175.874.175.82
碘吸附量/(mg·g-1989.6±6.5791.9±4.2812.4±8.31037±3.9
亚甲基蓝吸附量/(mg·g-1138.7±1.0113.4±0.9102.5±2.4163.7±0.7
苯酚吸附量/(mg·g-1163.1±3.3137.8±1.5159.7±2.7137.7±1.8
比表面积/(m2·g-1997.7±8.3972.2±5.7373.5±6.21 685.0±7.5
总孔容积/(cm3·g-10.488±0.0020.502±0.0020.231±0.0031.210±0.004
平均孔径/nm2.20±0.032.42±0.042.58±0.292.92±0.11
表1  4种活性炭的物理性质
图1  活性炭吸附装置
图2  4种活性炭对THMs的吸附量随时间的变化关系
THMsLangmuir模型Freundlich模型
qm/(μg·g-1b/(L·μg-1R2KF/(μg·g-1nR2
CHCl3248.1390.7520.838115.13.5660.955
CHCl2Br386.1000.3530.942132.53.0230.960
CHClBr2414.9380.4880.951143.12.5740.998
CHBr3378.7880.8050.976157.31.6230.994
表2  ACL1对THMs的吸附热力学模型
图3  ACL1对THMs的Langmuir等温吸附线
图4  ACL1对THMs的Freundlich等温吸附线
图5  ACL1对THMs的静态吸附效果
图6  不同初始浓度下THMs去除率随时间的变化
图7  THMs去除率随温度的变化
图8  不同实验条件下ACL1对CHCl3的动态吸附曲线
图9  ACL1对THMs的动态吸附曲线
1 ROCK J J. Formation of haloforms during chlorination of natural waters[J]. Water Treatment Examination, 1974(23): 234-243. doi:10.14311/334
doi: 10.14311/334
2 NIEMINSKI E C, CHAUDHURI S, LAMOREAUX T. The occurrence of DBPS in Utah drinking waters[J]. Journal American Water Works Association, 1993, 85(9): 98-105. DOI:10.1002/j. 1551-8833.1993.tb06067.x
doi: 10.1002/j. 1551-8833.1993.tb06067.x
3 孙卫玲,温丽丽,朱珺,等. 饮用水中三卤甲烷的形成与控制技术回顾与展望[J]. 应用基础与工程科学学报, 2003, 11(4): 361-369. DOI:10.3969/j.issn. 1005-0930.2003.04.004
SUN W L, WEN L L, ZHU J, et al. The formation and control technology of trihalomethanesin drinking water[J]. Journal of Basic Science and Engineering, 2003, 11(4): 361-369. DOI:10.3969/j.issn.1005-0930.2003.04.004
doi: 10.3969/j.issn.1005-0930.2003.04.004
4 李君文. 氯化消毒时三卤甲烷的形成(Ⅰ):形成机理及影响因素[J]. 环境保护科学, 1994(1): 5-9. DOI:10. 16803/j.cnki.issn.1004-6216.1994.01.002
LI J W. Formation of trihalomethanes in chlorinated water(Ⅰ): Mechanism and effect factors of trihalomethanes formation[J]. Environmental Protection Science, 1994, 20(1): 5-9. DOI:10. 16803/j.cnki.issn.1004-6216.1994.01.002
doi: 10. 16803/j.cnki.issn.1004-6216.1994.01.002
5 BEANE F L E, CANTOR K P, BARIS D, et al. Bladder cancer and water disinfection by-product exposures through multiple routes: A population-based case-control study (New England, USA)[J]. Environmental Health Perspectives, 2017, 125(6): 67010. DOI:10.1289/EHP89
doi: 10.1289/EHP89
6 周国宏, 余淑苑, 彭朝琼, 等. 深圳市饮用水中消毒副产物三卤甲烷的健康风险评价[J]. 环境与健康杂志, 2013, 30(8): 718-722. DOI:10.16241/j.cnki. 1001-5914.2013.08.008
ZHOU G H, YU S Y, PENG Z Q, et al. Health risk assessment of trihalomethanes in drinking water in Shenzhen[J]. Journal of Environment and Health, 2013, 30(8): 718-722. DOI:10.16241/j.cnki.1001-5914.2013.08.008
doi: 10.16241/j.cnki.1001-5914.2013.08.008
7 庆杉. 茶多酚作为消毒剂处理超滤出水的微生物特性研究[D]. 北京: 北京建筑大学, 2020.
QING S. The Microbial Characteristics of Tea Polyphenols as Disinfectant after Ultrafiltration Process[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.
8 郭子玉. 臭氧-茶多酚联合消毒效果及管网微生物特性研究[D]. 北京: 北京建筑大学, 2019.
GUO Z Y. Study on the Efficacy of Ozone-tea Polyphenols Combined Disinfection and Microbial Characteristics of Pipeline Network[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019.
9 SHAHI N K, MAENG M, KIM D, et al. Assessing the efficacy of dissolved air and flash-pressurized flotations using low energy for the removal of organic precursors and disinfection byproducts: A pilot-scale study[J]. Environmental Science and Pollution Research, 2021, 28(30): 40598-40607. DOI:10. 1007/s11356-020-09820-y
doi: 10. 1007/s11356-020-09820-y
10 JI G X, SUN S H, JIA R B, et al. Study on the removal of humic acid by ultraviolet/persulfate advanced oxidation technology[J]. Environmental Science and Pollution Research, 2020, 27(21): 26079-26090. DOI:10.1007/s11356-020-08894-y
doi: 10.1007/s11356-020-08894-y
11 GOLEA D M, JARVIS P, JEFFERSON B, et al. Influence of granular activated carbon media properties on natural organic matter and disinfection by-product precursor removal from drinking water[J]. Water Research, 2020, 174: 115613. DOI:10.1016/j.watres.2020.115613
doi: 10.1016/j.watres.2020.115613
12 陈超, 张晓健, 朱玲侠,等. 控制消毒副产物及前体物的优化工艺组合[J]. 环境科学, 2005, 26(4): 87-94. DOI:10.3321/j.issn:0250-3301.2005.04.017
CHEN C, ZHANG X J, ZHU L X, et al. Optimal process combination for control of disinfection by-products and precursors[J]. Environmental Science, 2005, 26(4): 87-94. DOI:10.3321/j.issn:0250-3301. 2005.04.017
doi: 10.3321/j.issn:0250-3301. 2005.04.017
13 罗凡, 董滨, 何群彪. 紫外线与消毒剂联合作用于黄浦江源水的研究[J]. 环境科学与技术, 2011, 34(6G): 14-17, 297.
LUO F, DONG B, HE Q B. Research on Huangpu River water by ultraviolet combined with disinfectant disinfections[J]. Environmental Science & Technology, 2011, 34(6G): 14-17, 297.
14 吴方同, 苏秋霞, 吴淑娟. 空气吹脱法去除饮用水中的三卤甲烷[J]. 给水排水, 2009, 35(12): 26-30. DOI:10.3969/j.issn.1002-8471.2009.12.006
WU F T, SU Q X, WU S J. Trihalomethanes in drinking water reduction through air stripping[J]. Water & Wastewater Engineering, 2009, 35(12): 26-30. DOI:10.3969/j.issn.1002-8471.2009.12.006
doi: 10.3969/j.issn.1002-8471.2009.12.006
15 张小璇, 任源, 贺明和, 等. 污水处理厂尾水中有机氯化物的活性炭吸附深度处理[J]. 环境科学学报, 2009, 29(3): 548-554. DOI:10.3321/j.issn:0253-2468.2009.03.013
ZHANG X X, REN Y, HE M H, et al. Adsorption of chlorinated organic compounds in effluents from wastewater treatment plants with powdered activated carbon[J]. Acta Scientiae Circumstantiae, 2009, 29(3): 548-554. DOI:10.3321/j.issn:0253-2468. 2009.03.013
doi: 10.3321/j.issn:0253-2468. 2009.03.013
16 张金松, 张红亮, 董文艺, 等. O3/BAC对氯化消毒副产物的控制作用[J]. 中国给水排水, 2004, 20(2): 16-20. DOI:10.3321/j.issn:1000-4602.2004. 02.005
ZHANG J S, ZHANG H L, DONG W Y, et al. Use of O3/BAC process for control of chlorine disinfection byproducts[J]. China Water & Wastewater, 2004, 20(2): 16-20. DOI:10.3321/j.issn:1000-4602. 2004.02.005
doi: 10.3321/j.issn:1000-4602. 2004.02.005
17 刘阔. 钴活化过一硫酸盐高级氧化过程中卤代副产物的生成[D]. 南京: 南京农业大学, 2016.
LIU K. Formation of Halogenated By-Products in Co2+ Activated Peroxymonosulfate Oxidation Process[D]. Nanjing: Nanjing Agricultural University, 2016.
18 FANG C, OU T, WANG X Y, et al. Effects of feed solution characteristics and membrane fouling on the removal of THMs by UF/NF/RO membranes[J]. Chemosphere, 2020, 260: 127625. DOI:10.1016/j.chemosphere.2020.127625
doi: 10.1016/j.chemosphere.2020.127625
19 张平, 杨岳平, 赵丹, 等. 饮用水中三氯甲烷与其他氯消毒副产物在活性炭上的吸附竞争研究[J]. 浙江大学学报(理学版), 2020, 47(1): 107-114. DOI:10. 3785/j.issn.1008-9497.2020.01.016
ZHANG P, YANG Y P, ZHAO D, et al. Study on adsorption competition on activated carbon between chloroform and other chlorine disinfectant in drinking water[J]. Journal of Zhejiang University (Science Edition), 2020, 47(1): 107-114. DOI:10.3785/j.issn.1008-9497.2020.01.016
doi: 10.3785/j.issn.1008-9497.2020.01.016
20 高超, 王启山, 夏海燕. 饮用水消毒副产物控制工艺的国内外研究动态[J]. 中国高新技术企业, 2010(9): 96-97. DOI:10.13535/j.cnki.11-4406/n.2010.09.055
GAO C, WANG Q S, XIA H Y. Research progress of drinking water disinfection by-products control technology at home and abroad[J]. China High-Tech Enterprises, 2010(9): 96-97. DOI:10.13535/j.cnki. 11-4406/n.2010.09.055
doi: 10.13535/j.cnki. 11-4406/n.2010.09.055
21 张娇. 活性炭吸附技术去除水中三卤甲烷的应用研究[D]. 上海: 华东理工大学, 2011.
ZHANG J. Application of Activated Carbon Adsorption Technology for Removing Trihalomethanes from Water[D]. Shanghai: East China University of Science and Technology, 2011.
22 甘轶群. 家庭常用设备对饮用水中卤代甲烷的去除研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
GAN Y Q. A Research of Household Methods for Halomethane Treatment in Drinking Water[D]. Harbin : Harbin Institute of Technology, 2015.
23 王立伟. 家庭常用设备对水中卤代乙酸的去除研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
WANG L W. An Evaluation of Household Methods for Haloacetic Acids Treatment in Water[D]. Harbin: Harbin Institute of Technology, 2015.
24 WANG G S, ALBEN K T. Effect of preadsorbed background organic matter on granular activated carbon adsorption of atrazine[J]. Science of the Total Environment, 1998, 224(1/2/3): 221-226. DOI:10. 1016/S0048-9697(98)00360-X
doi: 10. 1016/S0048-9697(98)00360-X
25 张建英, 陆娴婷, 朱丽红, 等. CHCl3和CHBrCl2在壳聚糖-活性炭吸附剂上的吸附效能研究[J]. 浙江大学学报(理学版), 2003, 30(6): 674-677, 720.
ZHANG J Y, LU X T, ZHU L H, et al. Study on the adsorption efficiency of CHCl3 & CHBrCl2 on chitosan-activated carbon sorbent[J]. Journal of Zhejiang University(Science Edition), 2003, 30(6): 674-677, 720.
26 邓瑛, 魏建荣, 鄂学礼, 等. 中国六城市饮用水中氯化消毒副产物分布的研究[J]. 卫生研究, 2008, 37(2): 207-210. DOI:10.3969/j.issn.1000-8020. 2008.02.022
DENG Y, WEI J R, E X L, et al. Study for distribution level of disinfection byproducts in drinking water from six cities in China[J]. Journal of Hygiene Research, 2008, 37(2): 207-210. DOI:10.3969/j.issn.1000-8020.2008.02.022
doi: 10.3969/j.issn.1000-8020.2008.02.022
[1] 龚书楠,胡婷媛,谢文惠,何林李,王向红. 二元环/线高分子在纳米棒界面区域的吸附行为[J]. 浙江大学学报(理学版), 2022, 49(6): 698-705.
[2] 周楚晨,李成,钱建英,杨昆仑,胡韵璇,徐新华. 氧化铁红对印染废水中锑(V)的吸附性能[J]. 浙江大学学报(理学版), 2022, 49(2): 201-209.
[3] 武云霞, 赵丹, 陈莎莎, 张平, 杨岳平. 反渗透淡化水调质稳定性及健康性实验研究[J]. 浙江大学学报(理学版), 2020, 47(1): 101-106.
[4] 张平, 杨岳平, 赵丹, 武云霞, 陈莎莎. 饮用水中三氯甲烷与其他氯消毒副产物在活性炭上的吸附竞争研究[J]. 浙江大学学报(理学版), 2020, 47(1): 107-114.
[5] 张乾, 吴骥, 余胜东, 王向红. 线性三嵌段共聚物格点薄膜受限下的自组装[J]. 浙江大学学报(理学版), 2018, 45(6): 707-713.
[6] 郭庆龄, 赵丽芹, 甘树, 徐百龙, 王鑫阳, 杨岳平. 突发自然灾害应急饮用水反渗透处理工艺研究[J]. 浙江大学学报(理学版), 2017, 44(6): 666-674.
[7] 范浙永, 刘涛, 包秀秀, 费金华. 不同结构C8烃在HZSM-5分子筛上的吸附与裂化研究[J]. 浙江大学学报(理学版), 2016, 43(4): 411-415.
[8] 冯佳蓓, 施积炎. 纳米羟基磷灰石对土壤重金属吸附与解吸特性的影响[J]. 浙江大学学报(理学版), 2015, 42(6): 732-738.
[9] 陈云龙,谢笔钧,胡慰望,徐程,杨志坚. 银杏叶黄酮糖苷精制工艺的研究[J]. 浙江大学学报(理学版), 1999, 26(2): 80-82.
[10] 张培敏;施清照;吴炳法;程晾. 吸附溶出伏安法测定毗喳酮的研究[J]. 浙江大学学报(理学版), 1997, 24(2): 166-169.