Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (4): 481-488    DOI: 10.3785/j.issn.1008-9497.2022.04.012
化学     
超声辅助的异喹啉-离子液体的合成和表征
尹洋1,马东1,陈颖露1,颜逸韬1,商志才1,俞建忠2(),吴军1()
1.浙江大学 化学系,浙江 杭州 310027
2.浙江省农业科学院农产品质量安全与营养研究所 农产品质量安全国家重点实验室,浙江 杭州 310021
Ultrasound-assisted synthesis and characterization of isoquinoline-based ionic liquids
Yang YIN1,Dong MA1,Yinglu CHEN1,Yitao YAN1,Zhicai SHANG1,Jianzhong YU2(),Jun WU1()
1.Department of Chemistry,Zhejiang University,Hangzhou 310027,China
2.State Key Laboratory for Quality and Safety of Agro-Products,Institute of Agro-Product Safety and Nutrition,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China
 全文: PDF(2146 KB)   HTML( 4 )
摘要:

为解决传统加热法合成异喹啉-离子液体存在的问题,开发了一种超声辅助合成异喹啉-离子液体的方法。通过异喹啉季铵化过程的对比研究,证明了该方法具有环保性强、产率高、反应时间短等优点。将其扩展至阴离子交换反应,发现超声辐射法有效促进了异喹啉溴化物与简单阴离子[N(CF3SO22-和[PF6-,以及与复杂阴离子2,4-二氯苯氧乙酸的阴离子交换反应。对所得到的异喹啉-离子液体进行了结构表征以及热行为和溶解度的研究和讨论。结果表明,所得液体具有良好的热稳定性,为快速、高效建立绿色多功能化离子液体库奠定了基础。

关键词: 超声异喹啉离子液体绿色方法    
Abstract:

To solve the problems in the conventional thermal heating synthesis of isoquinoline-based ionic liquids, an ultrasound-assisted synthesis of isoquinoline-based ionic liquids was developed. The comparative study of the quaternization process of isoquinoline proved that the method has apparent advantages over conventional thermal heating, i.e., ecofriendly nature, higher yield, and shorter reaction time. The ultrasonic method was then extended to the anion exchange reaction. The results demonstrated that the use of ultrasound irradiation efficiently promoted the anion-exchange reaction of isoquinolinium bromides with simple anions [N(CF3SO2)2]- and [PF6]-. It was also found that the anion-exchange reactions of isoquinolinium bromides with complex 2,4-dichlorophenoxyacetic acid anion were realized under ultrasonic conditions, which could not be achieved under the conventional heating method. The structure characterization, thermal behavior, and solubility of the obtained ionic liquids were investigated and discussed. All ionic liquids exhibited good thermal stability. This article thus provides a rapid and efficient method for the establishment of a multifunctionalized ionic liquids library.

Key words: ultrasound    isoquinoline    ionic liquids    green method
收稿日期: 2021-04-06 出版日期: 2022-07-13
CLC:  O 62  
基金资助: 国家自然科学基金资助项目(31471807)
通讯作者: 俞建忠,吴军     E-mail: jhxsyiz@163.com;wujunwu@zju.edu.cn
作者简介: 尹洋(1994—),ORCID:https://orcid.org/0000-0002-7198-0718,女,硕士,主要从事功能化离子液体研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
尹洋
马东
陈颖露
颜逸韬
商志才
俞建忠
吴军

引用本文:

尹洋,马东,陈颖露,颜逸韬,商志才,俞建忠,吴军. 超声辅助的异喹啉-离子液体的合成和表征[J]. 浙江大学学报(理学版), 2022, 49(4): 481-488.

Yang YIN,Dong MA,Yinglu CHEN,Yitao YAN,Zhicai SHANG,Jianzhong YU,Jun WU. Ultrasound-assisted synthesis and characterization of isoquinoline-based ionic liquids. Journal of Zhejiang University (Science Edition), 2022, 49(4): 481-488.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.04.012        https://www.zjujournals.com/sci/CN/Y2022/V49/I4/481

图1  异喹啉-离子液体的两步合成
  
序号时间/h温度/°C功率/W频率/kHz产率/%
13A700036
224A700054
32B3060206
42B301002020
52B501002035
62B701002069
73B701002073
85B701002073
表1  最佳反应条件的筛选
  
产物R1传统加热法超声辐射法
时间/h产率/%时间/h产率/%
3an-C2H53 (24)31A (41)B380
3bn-C4H93 (24)33A (43)B374
3cn-C6H133 (24)36A (54)B373
3dn-C8H173 (24)26A (46)B376
3en-C10H213 (24)31A (40)B371
3fn-C12H253 (24)9A (32)B367
3gn-C14H293 (24)9A (20)B359
3hn-C16H333 (24)6A (16)B357
3in-C18H373 (24)3A (3)B353
表2  异喹啉季铵化反应在超声辐射法与传统加热法下的对比
  
产物R2温度/°C时间/h甲醇/mL产率/%
4a5050.379
4b室温2097
4c502091
4d室温2084
4e502086
表3  超声辐射法下异喹啉的季铵化反应
图2  异喹啉与2-溴丙酸甲酯的选择性反应
  
序号产物RMY温度/℃时间/h甲醇/mL产率/%
15an-C6H13LiN(CF3SO22600.5696
25bn-C6H13KPF6700.51097
35cn-C4H92,4-D钾盐5020.7587
45dn-C6H132,4-D钾盐5020.7591
55en-C12H252,4-D钾盐7020.7593
65fn-C14H292,4-D钾盐7020.7596
75g2,4-D钾盐5020.7578
表4  超声辐射法下阴离子交换反应
化合物Tm/°CTc/°CTg/°C热分解步骤Tonset5%/°CTonset/°C状态
3a1222601231258固体
3b---52184248液体
3c1222701224243固体
3d---82171238液体
3e---452150238液体
3f18--101215237液体
3g5923-291233234固体
3h67--2215228固体
3i45--182192214固体
4a149113462189227固体
4b---1196197液体
4c-41-374125217液体
4d112--183103259蜡状
4e72--142128231蜡状
5a51-23-551371403固体
5b7718-281320330固体
5c117-172193230固体
5d103-553151221固体
5e-7-432150225液体
5f41-132200220固体
5g97--2148227固体
表5  异喹啉-离子液体和盐的热分析
图3  不同链长的烷基取代基的异喹啉溴化物的热分析
化合物甲醇二甲基亚砜N,N-二甲基甲酰胺乙醇丙酮乙酸乙酯氯仿二氯甲烷
斯奈德极性指数96.66.56.45.25.14.34.13.1
3a+++++--++
3b++±++--++
3c+++++--++
3d±+±±+--++
3e-+±±+--++
3f-+±++±-++
3g-++++±-++
3h-++++--++
3i-+±±±----
4a+++±+--+±
4b++-------
4c++--±----
4d++--+----
4e+++++±-++
5a-++++++++
5b-+++-++--
5c-+±±-----
5d-+-------
5e-+++±----
5f-+±+-----
5g-+++-----
表6  25 ℃下异喹啉-离子液体和盐的溶解度
1 ZAJAC A, KUKAWKA R, PAWLOWSKA-ZYGAROWICZ A, et al. Ionic liquids as bioactive chemical tools for use in agriculture and the preservation of agricultural products[J]. Green Chemistry, 2018, 20(21): 4764-4789. DOI:10. 1039/C8GC01424H
doi: 10. 1039/C8GC01424H
2 JI S, WANG Y J, SU Z Y, et al. Ionic liquids-ultrasound based efficient extraction of flavonoid glycosides and triterpenoid saponins from licorice[J]. RSC Advances, 2018, 8(25): 13989-13996. DOI:10.1039/C8RA01056K
doi: 10.1039/C8RA01056K
3 AMETA G, PATHAK A K, AMETA C, et al. Sonochemical synthesis and characterization of imidazolium based ionic liquids: A green pathway[J]. Journal of Molecular Liquids, 2015, 211: 934-937. DOI:10.1016/j.molliq.2015.08.009
doi: 10.1016/j.molliq.2015.08.009
4 HUSANU E, CAPPELLO V, POMELLI C S, et al. Chiral ionic liquid assisted synthesis of some metal oxides[J]. RSC Advances, 2017, 7(2): 1154-1160. DOI:10.1039/C6RA25736D
doi: 10.1039/C6RA25736D
5 SMIGLAK M, PRINGLE J M, LU X, et al. Ionic liquids for energy, materials, and medicine[J]. Chemical Communications, 2014, 50(66): 9228-9250. DOI:10.1039/c4cc02021a
doi: 10.1039/c4cc02021a
6 PERNAK J, SYGUDA A, JANISZEWSKA D, et al. Ionic liquids with herbicidal anions[J]. Tetrahedron, 2011, 67(26): 4838-4844. DOI:10. 1016/j.tet.2011.05.016
doi: 10. 1016/j.tet.2011.05.016
7 PRACZYK T, KARDASZ P, JAKUBIAK E, et al. Herbicidal ionic liquids with 2,4-D[J]. Weed Science, 2017, 60(2): 189-192. DOI:10.1614/WS-D-11-00171.1
doi: 10.1614/WS-D-11-00171.1
8 PAL A, MAAN R. Interactional behavior of surface active ionic liquid lauryl isoquinolinium bromide and anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt in aqueous solution[J]. Colloid and Polymer Science, 2018, 296: 483-494. DOI:10.1007/s00396-018-4263-5
doi: 10.1007/s00396-018-4263-5
9 ZHU P P, DING Y H, GUO R. Coil-globule structure transition and binding characteristics of DNA molecules induced by isoquinoline-based photoactive ionic liquid surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531: 150-163. DOI:10.1016/j.colsurfa.2017.07.082
doi: 10.1016/j.colsurfa.2017.07.082
10 VISSER A E, HOLBREY J D, ROGERS R D. Hydrophobic ionic liquids incorporating N-alkylisoquinolinium cations and their utilization in liquid-liquid separations[J]. Chemical Communications, 2001, 23: 2484-2485. DOI:10. 1039/b109340c
doi: 10. 1039/b109340c
11 SANCHETI S V, GOGATE P R. A review of engineering aspects of intensification of chemical synthesis using ultrasound[J]. Ultrasonics Sonochemistry, 2017, 36: 527-543. DOI:10.1016/j.ultsonch.2016.08.009
doi: 10.1016/j.ultsonch.2016.08.009
12 ZBANCIOC G, MANGALAGIU I I, MOLDOVEANU C. Ultrasound assisted synthesis of imidazolium salts: An efficient way to ionic liquids[J]. Ultrasonics Sonochemistry, 2015, 23: 376-384. DOI:10.1016/j.ultsonch.2014.10.028
doi: 10.1016/j.ultsonch.2014.10.028
13 KOWSARI E, MALLAKMOHAMMADI M. Ultrasound promoted synthesis of quinolines using basic ionic liquids in aqueous media as a green procedure[J]. Ultrasonics Sonochemistry, 2011, 18(1): 447-454. DOI:10.1016/j.ultsonch.2010. 07.020
doi: 10.1016/j.ultsonch.2010. 07.020
14 ARYA K, RAWAT D S, SASAI H. Zeolite supported Brønsted-acid ionic liquids: An eco approach for synthesis of spiro[indole-pyrido[3,2-e]thiazine] in water under ultrasonication[J]. Green Chemistry, 2012, 14(7): 1956-1963. doi:10.1039/c2gc35168d
doi: 10.1039/c2gc35168d
15 PIRSAHEB M, MORADI N. Sonochemical degradation of pesticides in aqueous solution: Investigation on the influence of operating parameters and degradation pathway: A systematic review[J]. RSC Advances, 2020, 10(13): 7396-7423. DOI:10. 1039/C9RA11025A
doi: 10. 1039/C9RA11025A
16 ZHANG Z J, JIANG Z Y, ZHU Q, et al. Discovery of β-carboline oxadiazole derivatives as fungicidal agents against rice sheath blight[J]. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9598-9607. DOI:10.1021/acs.jafc.8b02124
doi: 10.1021/acs.jafc.8b02124
17 PEI Q H, LI Y, GE X Z, et al. Multipath effects of berberine on peach brown rot fungus monilinia fructicola[J]. Crop Protection, 2019, 116: 92-100. DOI:10.1016/j.cropro.2018.10.017
doi: 10.1016/j.cropro.2018.10.017
18 SOUKUP O, DOLEZAL R, MALINAK D, et al. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series: The effect of the hydroxyl moiety[J]. Bioorganic & Medicinal Chemistry, 2016, 24(4): 841-848. DOI:10.1016/j.bmc.2016.01.006
doi: 10.1016/j.bmc.2016.01.006
19 SHI Z Y, XIAO Q, YIN D L. Synthesis of tetrahydroisoquinolines through TiCl4-mediated cyclization and Et3SiH reduction[J]. Chinese Chemical Letters, 2020, 31(3): 729-732. DOI:10. 1016/j.cclet.2019.09.023
doi: 10. 1016/j.cclet.2019.09.023
20 CUSTÓDIO D L, JUNIOR V F D V. Lauraceae alkaloids[J]. RSC Advances, 2014, 4: 21864-21890. doi:10.1039/c4ra01904k
doi: 10.1039/c4ra01904k
21 PERIYASAMI G, ARUMUGAM N, RAHAMAN M, et al. ACI/EG eutectic mixture mediated synthesis, characterization and in vitro osteoblast differentiation assessment of spiropyrrolo[1,2-b]isoquinoline analogues[J]. RSC Advances, 2018, 8(29): 16303-16313. DOI:10.1039/C8RA00646F
doi: 10.1039/C8RA00646F
22 PRADEEP F S, PALANISWAMY M, RAVI S, et al. Larvicidal activity of a novel isoquinoline type pigment from Fusarium moniliforme KUMBF1201 against aedes aegypti and anopheles stephensi[J]. Process Biochemistry, 2015, 50(9): 1479-1486. DOI:10.1016/j.procbio.2015.05.022
doi: 10.1016/j.procbio.2015.05.022
23 LEE C H, JEON J H, LEE S G, et al. Insecticidal properties of euphorbiaceae: Sebastiania corniculata-derived 8-hydroxyquinoline and its derivatives against three planthopper species (hemiptera: delphacidae)[J]. Journal of the Korean Society for Applied Biological Chemistry, 2010, 53: 464-469. DOI:10. 3839/jksabc. 2010.071
doi: 10. 3839/jksabc. 2010.071
24 LI D Q, ZANG H J, WU C C, et al. 1-Methylimidazolium hydrogen sulfate catalyzed convenient synthesis of 2,5-dimethyl-N-substituted pyrroles under ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2013, 20(5): 1144-1148. DOI:10. 1016/j.ultsonch.2013.01.019
doi: 10. 1016/j.ultsonch.2013.01.019
25 HE J Y, JIA H Z, YAO Q G, et al. Ultrasound-mediated synthesis of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates catalyzed by 1-carboxymethyl-3-methylimidazolium tetrafluoroborate under solvent free condition[J]. Ultrasonics Sonochemistry, 2015, 22: 144-148. DOI:10.1016/j.ultsonch.2014.05.026
doi: 10.1016/j.ultsonch.2014.05.026
26 GHERASIM C, AIRINEI A, TIGOIANU R, et al. Synthesis and photophysical insights of new fused N-heterocyclic derivatives with isoquinoline skeleton[J]. Journal of Molecular Liquids, 2020, 310: 113196. DOI:10.1016/j.molliq.2020.113196
doi: 10.1016/j.molliq.2020.113196
27 CAI Q H, HOU Y W, SHI S Y, et al. A novel ionic liquid based on small size cation[J]. Chinese Chemical Letters, 2009, 20(1): 62-65. DOI:10. 1016/j.cclet.2008.10.008
doi: 10. 1016/j.cclet.2008.10.008
28 NIEMCZAK M, RZEMIENIECKI T, SOBIECH L, et al. Influence of the alkyl chain length on the physicochemical properties and biological activity in a homologous series of dichlorprop-based herbicidal ionic liquids[J]. Journal of Molecular Liquids, 2019, 276: 431-440. DOI:10.1016/j.molliq.2018. 12.013
doi: 10.1016/j.molliq.2018. 12.013
[1] 刘生财, 段俊朋, 姚德恒, 林玉玲, 赖钟雄. 响应面试验优化超声波辅助提取龙眼愈伤组织中单宁的工艺[J]. 浙江大学学报(理学版), 2019, 46(1): 58-64.
[2] 叶辉, 盛田田, 周侣艳, 叶晓英, 徐新华. 长光程比色池-流动注射测定水中微量挥发酚[J]. 浙江大学学报(理学版), 2013, 40(4): 441-446.
[3] 郝天亮;石成儒;曾耀武;邱东江. 金刚石粉悬浮液超声预处理促进金刚石成核特性研究[J]. 浙江大学学报(理学版), 1997, 24(4): 322-328.