Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (6): 698-705    DOI: 10.3785/j.issn.1008-9497.2022.06.008
物理学     
二元环/线高分子在纳米棒界面区域的吸附行为
龚书楠,胡婷媛,谢文惠,何林李(),王向红
温州大学 物理系,浙江 温州 325035
Adsorption behavior of binary polymers on the interface around nanorods
Shunan GONG,Tingyuan HU,Wenhui XIE,Linli HE(),Xianghong WANG
Department of Physics,Wenzhou University,Wenzhou 325035,Zhejiang Province,China
 全文: PDF(2663 KB)   HTML( 4 )
摘要:

通过粗粒化分子动力学模拟,在高分子链与纳米棒间的不同相互作用强度、不同高分子链刚性,且在同时考虑单分散和双分散共混高分子链条件下,研究了高分子链在纳米棒界面区域的吸附行为。对于柔性环形高分子链,增强高分子链与纳米棒间的相互作用有利于提高纳米棒对高分子链的吸附。当高分子链与纳米棒间的相互作用强度较弱时,增强高分子链刚性会诱导高分子链套在纳米棒上形成规则的自组装结构。对环/线高分子链共混情况,当高分子链与纳米棒间的相互作用较弱时,随着链刚性的增强,环形高分子链优先占据纳米棒界面区域;当高分子链与纳米棒间的相互作用较强时,随着链刚性的增强,纳米棒界面区域由优先吸附环形高分子链转为优先吸附线形高分子链。研究结果有助于进一步了解高分子链与纳米棒的复合材料,为改善纳米复合材料的性能提供理论支持。

关键词: 分子动力学模拟选择性吸附行为纳米棒界面    
Abstract:

Coarse-grained molecular dynamics simulations are used to investigate the adsorption behavior of monodisperse and bidisperse polymer chains onto the nanorod interface under different nanorod-polymer interactions with different chain stiffness. For flexible ring polymer chains, strong nanorod-polymer interaction is beneficial to the adsorption of the polymer chains onto the nanorod interface. When the nanorod-polymer interaction is weak, increasing the chain stiffness will promote the formation of a regular self-assembled structure around the nanorods. In the case of bidisperse under a weak nanorod-polymer interaction, as the chain stiffness increases, the ring polymer chains slightly preferentially occupy the interfacial region of the nanorods. However, when the nanorod-polymer interaction is strong, increasing the chain stiffness will bring about a selective adsorption transition from preferential adsorption for ring chain to preferential adsorption for linear chain occurs. This selective adsorption behavior can help to further understand the internal interaction mechanism in nanocomposite systems. The results can provide the guidance for improving the properties of nanocomposite materials.

Key words: molecular dynamics simulation    selective adsorption behavior    nanorod-polymer interface
收稿日期: 2021-11-12 出版日期: 2022-11-23
CLC:  O 469  
基金资助: 国家自然科学基金资助项目(11875205);浙江省自然科学基金项目(LY19B040006);浙江省大学生新苗计划项目(2021R429020)
通讯作者: 何林李     E-mail: linlihe@wzu.edu.cn
作者简介: 龚书楠(1995—),ORCID: https://orcid.org/0000-0001-9492-1991,女,硕士,主要从事高分子物理研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
龚书楠
胡婷媛
谢文惠
何林李
王向红

引用本文:

龚书楠,胡婷媛,谢文惠,何林李,王向红. 二元环/线高分子在纳米棒界面区域的吸附行为[J]. 浙江大学学报(理学版), 2022, 49(6): 698-705.

Shunan GONG,Tingyuan HU,Wenhui XIE,Linli HE,Xianghong WANG. Adsorption behavior of binary polymers on the interface around nanorods. Journal of Zhejiang University (Science Edition), 2022, 49(6): 698-705.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.06.008        https://www.zjujournals.com/sci/CN/Y2022/V49/I6/698

图1  不同相互作用强度εnp下纳米棒界面区域环形高分子链的径向分布函数gnp(r)
图2  当εnp=0.1时在不同kB下纳米棒界面区域环形高分子链的径向分布函数gnp(r)和构型
图3  纳米棒界面区域内链单体总数NLayer1随链刚性的变化
图4  当εnp=0.1时纳米棒界面区域的吸附情况
图5  当εnp=0.1时纳米棒界面区域内的相关结果
图6  当εnp=10.0时纳米棒界面区域内的相关结果
1 HE L L, DONG Z, ZHANG L X. Selective adsorption behavior of polymer at the polymer-nanoparticle interface[J]. Journal of Polymer Science Part B: Polymer Physics, 2016, 54(18): 1829-1837. DOI:10.1002/polb.24085
doi: 10.1002/polb.24085
2 YU X J, WANG T, TSUI O K C, et al. Tuning the effective viscosity of polymer films by chemical modifications[J]. Macromolecules, 2019, 52(9): 3499-3505. DOI:10.1021/acs.macromol.8b02699
doi: 10.1021/acs.macromol.8b02699
3 KODALI D, UDDIN M J, MOURA E A B, et al. Mechanical and thermal properties of modified Georgian and Brazilian clay infused biobased epoxy nanocomposites[J]. Materials Chemistry and Physics, 2021, 257: 123821. DOI:10.1016/j.matchemphys. 2020.123821
doi: 10.1016/j.matchemphys. 2020.123821
4 BHADAURIYA S, WANG X T, PITLIYA P, et al. Tuning the relaxation of nanopatterned polymer films with polymer-grafted nanoparticles: Observation of entropy-enthalpy compensation[J]. Nano Letters, 2018, 18(12): 7441-7447. DOI:10.1021/acs.nanolett. 8b02514
doi: 10.1021/acs.nanolett. 8b02514
5 GAWEK M, MADKOUR S, SZYMONIAK P, et al. Energy dependent XPS measurements on thin films of a poly(vinyl methyl ether)/polystyrene blend concentration profile on a nanometer resolution to understand the behavior of nanofilms[J]. Soft Matter, 2021, 17(29): 6985-6994. DOI:10.1039/D1SM00656H
doi: 10.1039/D1SM00656H
6 ZUEV V V, IVANOVA Y G. Mechanical and electrical properties of polyamide-6-based nanocomposites reinforced by fulleroid fillers[J]. Polymer Engineering and Science, 2012, 52(6): 1206-1211. DOI:10.1002/pen.22188
doi: 10.1002/pen.22188
7 SONG Q L, JI Y Y, LI S B, et al. Adsorption behavior of polymer chain with different topology structure at the polymer-nanoparticle interface[J]. Polymers, 2018, 10(6): 590. DOI:10.3390/polym10060590
doi: 10.3390/polym10060590
8 MACKAY M E, DAO T T, TUTEJA A, et al. Nanoscale effects leading to non-Einstein-like decrease in viscosity[J]. Nature Materials, 2003, 2(11): 762-766. DOI:10.1038/nmat999
doi: 10.1038/nmat999
9 HUBER G, VILGIS T A, HEINRICH G. Universal properties in the dynamical deformation of filled rubbers[J]. Journal of Physics: Condensed Matter, 1996, 8(29): L409-L412. doi:10.1088/0953-8984/8/29/003
doi: 10.1088/0953-8984/8/29/003
10 SARICIFTCI N S, SMILOWITZ L, HEEGER A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science, 1992, 258(5087): 1474-1476. DOI:10. 1126/science.258.5087.1474
doi: 10. 1126/science.258.5087.1474
11 OLSON E, LIU F, BLISKO J, et al. Self-assembly in biobased nanocomposites for multifunctionality and improved performance[J]. Nanoscale Advances, 2021, 3(15): 4321-4348. DOI:10.1039/D1NA00391G
doi: 10.1039/D1NA00391G
12 MACKAY M E, TUTEJA A, DUXBURY P M, et al. General strategies for nanoparticle dispersion[J]. Science, 2006, 311(5768): 1740-1743. DOI:10. 1126/science.1122225
doi: 10. 1126/science.1122225
13 TUTEJA A, DUXBURY P M, MACKAY M E. Polymer chain swelling induced by dispersed nanoparticles[J]. Physical Review Letters, 2008, 100(7): 077801. DOI:10.1103/PhysRevLett.100. 077801
doi: 10.1103/PhysRevLett.100. 077801
14 HOOPER J B, SCHWEIZER K S. Theory of phase separation in polymer nanocomposites[J]. Macromolecules, 2006, 39(15): 5133-5142. DOI:10. 1021/ma00074a029
doi: 10. 1021/ma00074a029
15 刘军, 沈建祥, 曹达鹏, 等. 计算机模拟研究聚合物纳米复合材料的分散与界面[J]. 高分子学报, 2016(8): 1048-1061. DOI:10.11777/j.issn1000-3304. 2016.16105
LIU J, SHEN J X, CAO D P, et al. Computer simulation of dispersion and interface in polymer nanocomposites[J]. Acta Polymerica Sinica, 2016(8): 1048-1061. DOI:10.11777/j.issn1000-3304.2016.16105
doi: 10.11777/j.issn1000-3304.2016.16105
16 CRAWFORD M K, SMALLEY R J, COHEN G, et al. Chain conformation in polymer nanocomposites with uniformly dispersed nanoparticles[J]. Physical Review Letters, 2013, 110(19): 196001. DOI:10. 1103/PhysRevLett.110.196001
doi: 10. 1103/PhysRevLett.110.196001
17 HOU G Y, TAO W, LIU J, et al. Tailoring the dispersion of nanoparticles and the mechanical behavior of polymer nanocomposites by designing the chain architecture[J]. Physical Chemistry Chemical Physics, 2017, 19(47): 32024-32037. DOI:10.1039/c7cp06199d
doi: 10.1039/c7cp06199d
18 WANG D, LI F Q, WANG X H, et al. Effects of chain stiffness and shear flow on nanoparticle dispersion and distribution in ring polymer melts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2020, 21(3): 229-239. DOI:10.1631/jzus.A1900530
doi: 10.1631/jzus.A1900530
19 DENG Z Y, JIANG Y W, HE L L, et al. Aggregation-dispersion transition for nanoparticles in semiflexible ring polymer nanocomposite melts[J]. The Journal of Physical Chemistry B, 2016, 120(44): 11574-11581. DOI:10.1021/acs.jpcb.6b07292
doi: 10.1021/acs.jpcb.6b07292
20 VACATELLO M. Chain dimensions in filled polymers: An intriguing problem[J]. Macromolecules, 2002, 35(21): 8191-8193. DOI:10.1021/ma020416s
doi: 10.1021/ma020416s
21 SKOUNTZOS E N, KARADIMA K S, MAVRANTZAS V G. Structure and dynamics of highly attractive polymer nanocomposites in the semi-dilute regime: The role of interfacial domains and bridging chains[J]. Polymers, 2021, 13(16): 2749. DOI:10.3390/polym13162749
doi: 10.3390/polym13162749
22 MIDYA J, RUBINSTEIN M, KUMAR S K, et al. Structure of polymer-grafted nanoparticle melts[J]. ACS Nano, 2020, 14(11): 15505-15516. DOI:10. 1021/acsnano.0c06134
doi: 10. 1021/acsnano.0c06134
23 VACATELLO M. Monte Carlo simulations of polymer melts filled with solid nanoparticles[J]. Macromolecules, 2001, 34(6): 1946-1952. DOI:10. 1021/ma0015370
doi: 10. 1021/ma0015370
24 GAO Y Y, LIU J, SHEN J X, et al. Influence of various nanoparticle shapes on the interfacial chain mobility: A molecular dynamics simulation[J]. Physical Chemistry Chemical Physics, 2014, 16(39): 21372-21382. DOI:10.1039/c4cp03019b
doi: 10.1039/c4cp03019b
25 YANG X, WU F, HU D D, et al. Simulation of the critical adsorption of semi-flexible polymers[J]. Chinese Physics Letters, 2019, 36(9): 098202. DOI:10.1088/0256-307X/36/9/098202
doi: 10.1088/0256-307X/36/9/098202
26 SOMMER J U, KLOS J S, MIRONOVA O N. Adsorption of branched and dendritic polymers onto flat surfaces: A Monte Carlo study[J]. The Journal of Chemical Physics, 2013, 139(24): 244903. DOI:10.1063/1.4849176
doi: 10.1063/1.4849176
27 WANG C, ZHOU Y L, WU F, et al. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes[J]. Acta Physica Sinica, 2020, 69(16): 168201. DOI:10.7498/aps.69.20200411
doi: 10.7498/aps.69.20200411
28 KARATRANTOS A, COMPOSTO R J, WINEY K I, et al. Nanorod diffusion in polymer nanocomposites by molecular dynamics simulations[J]. Macromolecules, 2019, 52(6): 2513-2520. DOI:10.1021/acs.macromol. 8b02141
doi: 10.1021/acs.macromol. 8b02141
29 CHEN Y L, XU Q, JIN Y F, et al. Design of end-to-end assembly of side-grafted nanorods in a homopolymer matrix[J]. Macromolecules, 2018, 51(11): 4143-4157. DOI:10.1021/acs.macromol.8b00292
doi: 10.1021/acs.macromol.8b00292
30 LIU J, WU Y, SHEN J X, et al. Polymer-nanoparticle interfacial behavior revisited: A molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2011, 13(28): 13058-13069. DOI:10.1039/c0cp02952a
doi: 10.1039/c0cp02952a
31 HAO T F, ZHOU Z P, WANG Y, et al. Segmental dynamics in interfacial region of composite materials[J]. Monatshefte Für Chemie-Chemical Monthly, 2017, 148(7): 1285-1293. DOI:10.1007/s00706-017-1917-9
doi: 10.1007/s00706-017-1917-9
32 戴利均, 孙昭艳. 聚合物纳米复合体系中聚合物结构及动力学研究进展[J]. 高等学校化学学报, 2020, 41(5): 924-935. DOI:10.7503/cjcu20190640
DAI L J, SUN Z Y. Perspective on the structure and dynamics of polymer chains in polymer nanocomposites[J]. Chemical Journal of Chinese Universities, 2020, 41(5): 924-935. DOI:10.7503/cjcu20190640
doi: 10.7503/cjcu20190640
33 HOU F Y, SONG Y H, ZHENG Q. Influence of liquid isoprene rubber on strain softening of carbon black filled isoprene rubber nanocomposites[J]. Chinese Journal of Polymer Science, 2021, 39(7): 887-895. DOI:10.1007/s10118-021-2550-y
doi: 10.1007/s10118-021-2550-y
34 KREMER K, GREST G S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation[J]. The Journal of Chemical Physics, 1990, 92(8): 5057-5086. DOI:10.1063/1.458541
doi: 10.1063/1.458541
35 CIFRA P. Channel confinement of flexible and semiflexible macromolecules[J]. The Journal of Chemical Physics, 2009, 131(22): 224903. DOI:10.1063/1.3271830
doi: 10.1063/1.3271830
36 SMITH J S, BEDROV D, SMITH G D. A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite[J]. Composites Science and Technology, 2003, 63(11): 1599-1605. DOI:10.1016/S0266-3538(03)00061-7
doi: 10.1016/S0266-3538(03)00061-7
37 WEEKS J D, CHANDLER D, ANDERSEN H C. Role of repulsive forces in determining the equilibrium structure of simple liquids[J]. The Journal of Chemical Physics, 1971, 54(12): 5237-5247. DOI:10.1063/1.1674820
doi: 10.1063/1.1674820
38 LIU J, CAO D P, ZHANG L Q. Molecular dynamics study on nanoparticle diffusion in polymer melts: A test of the stokes-Einstein law[J]. The Journal of Physical Chemistry C, 2008, 112(17): 6653-6661. DOI:10.1021/jp800474t
doi: 10.1021/jp800474t
39 JIANG Y W, ZHANG D, HE L L, et al. Entropic interactions in semiflexible polymer nanocomposite melts[J]. The Journal of Physical Chemistry B, 2016,120(3): 572-582. DOI:10.1021/acs.jpcb. 5b09551
doi: 10.1021/acs.jpcb. 5b09551
40 ZHOU X L, JIANG Y W, CHEN J M, et al. Size-dependent nanoparticle dynamics in semiflexible ring polymer nanocomposites[J]. Polymer, 2017,131: 243-251. DOI:10.1016/j.polymer.2017. 10.038
doi: 10.1016/j.polymer.2017. 10.038
[1] 汪冒君, 宣南霞, 吴 军. 乙酰乳酸合成酶与抑制剂ZJ0777及CIE的分子对接和分子动力学模拟[J]. 浙江大学学报(理学版), 2015, 42(6): 709-713.