Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (3): 393-402    DOI: 10.3785/j.issn.1006-754X.2025.05.120
Optimization Design     
Analysis of load-bearing characteristics and parameter optimization of hydrostatic guideway in precision grinding machine
Kun ZHANG1(),Hongliang GUO1,Yousheng SHI2,Hongkai LI1,Dongjie ZHAO1()
1.School of Mechanical & Automotive Engineering, Liaocheng University, Liaocheng 252000, China
2.Liaocheng Science & Technology Information Research Center, Liaocheng 252000, China
Download: HTML     PDF(4046KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Load-bearing capacity and stiffness are key performance indicators for measuring the load-bearing characteristics of hydrostatic guideways, directly affecting the machining accuracy and stability of precision grinding machines. In response to the unclear interaction mechanism of the structural parameters of the opposed oil pads in hydrostatic guideways and the limitation of existing studies focusing on single oil pad analysis, taking the granite hydrostatic guideway of a certain type of precision grinding machine as the research object, the load-bearing characteristic analysis and parameter optimization under the coupling effect of multiple parameters were systematically carried out. Firstly, based on the theory of fluid mechanics, a mathematical model of the load-bearing characteristics of the hydrostatic guideway was established, and analytical expressions for the load-bearing capacity and stiffness of the opposed oil pads were derived. Then, through single-factor analysis, the independent influence laws of oil supply pressure, oil cavity clearance, oil seal edge width and orifice throttler diameter on the load-bearing characteristics of the hydrostatic guideway were revealed. It was found that the oil supply pressure and oil cavity clearance had a significant impact on the load-bearing capacity and stiffness. Finally, 27 groups of experiments were designed using the BBD (Box-Behnken Design) method, and a second-order polynomial regression model was constructed to analyze the interaction mechanism of multiple parameters. Meanwhile, the multi-objective optimization was carried out based on the response surface method, and the optimal solution set of the design parameters was obtained. The results showed that the load-bearing capacity and stiffness of the optimized hydrostatic guideway were improved by 24.99% and 19.62%, respectively. The research results provide a theoretical reference for the enhancement of the load-bearing performance and parameter optimization of hydrostatic guideways in precision grinding machines.



Key wordshydrostatic guideway      load-bearing characteristics      interaction      parameter optimization      response surface method     
Received: 12 March 2025      Published: 02 July 2025
CLC:  TH 137  
Corresponding Authors: Dongjie ZHAO     E-mail: 13563837199@163.com;zhaodongjie@lcu.edu.cn
Cite this article:

Kun ZHANG,Hongliang GUO,Yousheng SHI,Hongkai LI,Dongjie ZHAO. Analysis of load-bearing characteristics and parameter optimization of hydrostatic guideway in precision grinding machine. Chinese Journal of Engineering Design, 2025, 32(3): 393-402.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.120     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I3/393


精密磨床液体静压导轨承载特性分析与参数优化

承载力和刚度是衡量液体静压导轨承载特性的关键性能指标,直接影响精密磨床的加工精度与稳定性。针对液体静压导轨对置油垫结构参数的交互作用机制不明确、现有研究多局限于单油垫分析的问题,以某型精密磨床的花岗岩液体静压导轨为研究对象,系统地开展了多参数耦合作用下的承载特性分析与参数优化。首先,基于流体力学理论构建了液体静压导轨承载特性的数学模型,并推导出对置油垫承载力与刚度的解析表达式。然后,通过单因素分析揭示了供油压力、油腔间隙、封油边宽度及小孔节流器直径对液体静压导轨承载特性的独立影响规律,发现供油压力和油腔间隙对承载力和刚度有显著影响。最后,采用BBD(Box-Behnken Design)法设计了27组试验,构建了二阶多项式回归模型,以解析多参数的交互作用机制,并基于响应面法开展了多目标优化,获得了设计参数的最优解集。结果表明:优化后液体静压导轨的承载力和刚度分别提升了24.99%和19.62%。研究结果为精密磨床液体静压导轨的承载性能提升和参数优化提供了一定的理论参考。


关键词: 液体静压导轨,  承载特性,  交互作用,  参数优化,  响应面法 
Fig.1 Structure of granite hydrostatic guideway
Fig.2 Schematic diagram of hydrostatic guideway flow passage and its static pressure support cross-section
参数数值
油垫宽度/mm100
油垫长度/mm180
封油边宽度/mm20
小孔节流器直径/mm0.16
油腔间隙/μm40
初始油膜厚度/μm20
供油压力/MPa1.0
液压油密度/(kg/m3)848.4
液压油动力黏度/(N?s/m2)0.019 259
Table 1 Design parameters of hydrostatic guideway and performance parameters of hydraulic oil
Fig.3 Structure diagram of rectangular oil pad and orifice throttler
Fig.4 Force diagram of hydrostatic guideway
Fig.5 Influence of oil supply pressure on load-bearing characteristics of hydrostatic guideway
Fig.6 Influence of oil cavity clearance on load-bearing characteristics of hydrostatic guideway
Fig.7 Influence of oil seal edge width on load-bearing characteristics of hydrostatic guideway
Fig.8 Influence of orifice throttler diameter on load-bearing characteristics of hydrostatic guideway
设计参数取值范围
供油压力/MPa0.7~1.3
油腔间隙/μm40~45
封油边宽度/mm15~19
小孔节流器直径/mm0.15~0.18
Table 2 Value range of each design parameter of hydrostatic guideway
序号因素承载力/N

刚度/

(N/μm)

A/MPaB/μmC/mmD/mm
11.343150.167 101.581 113.78
21.043170.166 348.411 232.36
31.045190.166 348.411 232.36
41.043190.157 376.281 272.81
50.743170.154 625.09867.84
61.045170.184 540.32814.65
71.040190.165 278.161 098.28
80.743190.167 587.191 595.22
91.043190.187 972.811 578.69
101.043150.156 348.411 232.36
110.743150.165 700.581 137.06
120.745170.167 110.581 168.43
131.040150.166 665.541 227.99
141.345170.164493.91858.69
151.043170.165 142.181 105.84
161.043170.168 434.931 583.41
171.045150.166 136.571 214.29
181.343170.159 382.991 654.87
190.740170.166 505.821 147.17
201.045170.156 380.011 389.69
211.040170.154 632.51791.76
221.343170.183 917.92793.18
231.040170.187 218.971 272.19
241.043150.186 076.521 255.80
251.343190.164 912.911 069.65
261.340170.165 015.77797.98
270.743170.187 893.391 632.31
Table 3 Experimental schemes and results of design parameter optimization for hydrostatic guideway
来源承载力刚度
FPFP
模型1 404.95<0.000 13 277.88<0.000 1
A1 681.06<0.000 14 1591.77<0.000 1
B2 158.63<0.000 12 096.13<0.000 1
C1.460.250 01 361.20<0.000 1
D4.75<0.000 149.92<0.000 1
AB25.290.000 335.48<0.000 1
AC10.680.006 74.050.067 2
AD61.86<0.000 12.850.117 4
BC2.950.111 80.741 60.406 0
BD1.800.003 05.500.037 1
CD18.160.001 124.370.000 3
A214.110.002 71.700.216 2
B2111.07<0.000 1110.51<0.000 1
C25.770.033 32.450.143 1
D21.690.218 368.98<0.000 1
r20.999 40.999 7
radj20.998 70.999 4
rpre20.996 50.998 5
Table 4 Variance analysis results of load-bearing capacity and stiffness response surface models
Fig.9 Interaction influence of design parameters on load-bearing characteristics of hydrostatic guideway
设计参数承载力刚度
供油压力6.758.4
油腔间隙22.125.3
封油边宽度3.511.6
小孔节流器直径11.74.7
Table 5 Contribution rate of each design parameter to load-bearing capacity and stiffness
设计参数与性能参数优化前优化后
供油压力/MPa1.01.1
油腔间隙/μm4041
封油边宽度/mm2015
小孔节流器直径/mm0.160.18
承载力/N6 140.527 675.36
刚度/(N/μm)1 098.761 314.34
Table 6 Comparison of load-bearing characteristics of hydrostatic guideway before and after optimization
[[1]]   高殿荣, 赵建华, 张作超. 液体静压导轨单一导轨面内油腔数目的分析[J]. 工程力学, 2013, 30(4): 423-428, 441.
GAO D R, ZHAO J H, ZHANG Z C. Analysis of number of oil-pockets in one slide surface of liquid hydrostatic slide[J]. Engineering Mechanics, 2013, 30(4): 423-428, 441.
[[2]]   彭冲. 新型高液阻液体静压导轨的结构优化设计及特性分析[D]. 西安: 西安理工大学, 2014.
PENG C. The structure optimization design and characteristic analysis of the new high liquid resistance of hydrostatic guideway[D]. Xi’an: Xi’an University of Technology, 2014.
[[3]]   董鹏程. 超精密液体静压导轨静动态特性分析及控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
DONG P C. Analysis of the static and dynamic characteristics of ultra-precision hydrostatic guideway and its control technology research[D]. Harbin: Harbin Institute of Technology, 2013.
[[4]]   仝志伟, 洪荣晶, 孙付仲. 基于静压导轨平面度误差的转台支承布局重构[J]. 制造技术与机床, 2022(2): 67-72.
TONG Z W, HONG R J, SUN F Z. Reconstruction of turntable support layout based on flatness error of hydrostatic guide[J]. Manufacturing Technology & Machine Tool, 2022(2): 67-72.
[[5]]   张伟. 定量供油开式液体静压环形导轨油膜厚度研究[J]. 机械工程师, 2011(7): 34-35.
ZHANG W. Study on oil film thickness of open hydrostatic annular guide rail with quantitative oil supply[J]. Mechanical Engineer, 2011(7): 34-35.
[[6]]   朴银川, 张宣, 张飞虎. 超精密机床液体静压导轨静动态特性研究[J]. 组合机床与自动化加工技术, 2020(10): 1-4, 8.
PIAO Y C, ZHANG X, ZHANG F H. Research on static and dynamic characteristic of hydrostatic slide for ultra-precision machine tools[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(10): 1-4, 8.
[[7]]   SHEN F, CHEN C L, LIU Z M. Effect of pocket geometry on the performance of a circular thrust pad hydrostatic bearing in machine tools[J]. Tribology Transactions, 2014, 57(4): 700-714.
[[8]]   夏毅敏, 王洋, 胡均平, 等. 节流器结构参数对Nanosys-1000液体静压导轨承载特性的影响[J]. 光学 精密工程, 2015, 23(9): 2586-2594. doi:10.3788/ope.20152309.2586
XIA Y M, WANG Y, HU J P, et al. Influence of restrictor structural parameters on load-bearing characteristics of Nanosys-1000 hydrostatic guideway[J]. Optics and Precision Engineering, 2015, 23(9): 2586-2594.
doi: 10.3788/ope.20152309.2586
[[9]]   杨添任. Nanosys-1000非球面加工机床液体静压导轨工作特性研究[D]. 长沙: 中南大学, 2013.
YANG T R. Research of working characteristics of hydrostatic guideway of Nanosys-1000 aspherical machining tool[D]. Changsha: Central South University, 2013.
[[10]]   应晔. 用于液体静压导轨的花岗岩材料结构分析与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
YING Y. Structure analysis and experimental study of granite material applied in hydrostatic guide[D]. Harbin: Harbin Institute of Technology, 2008.
[[11]]   陈燕生. 液体静压支承原理和设计[M]. 北京: 国防工业出版社, 1980: 33-35.
CHEN Y S. Principle and design of hydrostatic bearing[M]. Beijing: National Defense Industry Press, 1980: 33-35.
[[12]]   武鹏飞, 高峰, 李艳. 液体静压导轨初始液阻比的最优设计分析[J]. 机床与液压, 2019, 47(7): 76-79.
WU P F, GAO F, LI Y. Optimal design of initial liquid resistance ratio of hydrostatic guide[J]. Machine Tool & Hydraulics, 2019, 47(7): 76-79.
[[13]]   李晓会. 基于超精密车床闭式静压导轨节流器参数研究[J]. 制造技术与机床, 2023(8): 5-12, 31.
LI X H. Research on parameters of flow regulators based on closed hydrostatic guideway of ultra-precision lathe[J]. Manufacturing Technology & Machine Tool, 2023(8): 5-12, 31.
[[14]]   李典伦, 黄华, 邓文强. 数控机床液体静压导轨结构的优化设计[J]. 工程设计学报, 2020, 27(4): 448-455.
LI D L, HUANG H, DENG W Q. Optimization design of structure of the hydrostatic guideway of NC machine tool[J]. Chinese Journal of Engineering Design, 2020, 27(4): 448-455.
[[15]]   乔文通, 邵先月, 钱丽娟, 等. 响应面法优化空气喷嘴雾化流场的数值研究[J]. 机床与液压, 2021, 49(9): 149-157.
QIAO W T, SHAO X Y, QIAN L J, et al. Numerical study on the optimization of atomization flow field in air nozzle using response surface methodology[J]. Machine Tool & Hydraulics, 2021, 49(9): 149-157.
[[16]]   刘帅呈, 李俊, 资明康, 等. 基于响应面法的微结构抛光工具优化设计[J]. 模具工业, 2025, 51(3): 56-66.
LIU S C, LI J, ZI M K, et al. Optimization design of micro-structure polishing tools based on response surface methodology[J]. Die & Mould Industry, 2025, 51(3): 56-66.
[[17]]   邱春雷, 尹洋. 基于响应面法的小孔节流静压气体轴承多目标优化[J]. 润滑与密封, 2022, 47(7): 125-130. doi:10.3969/j.issn.0254-0150.2022.07.018
QIU C L, YIN Y. Multi-objective optimization of aerostatic bearing with orifice based on response surface method[J]. Lubrication Engineering, 2022, 47(7): 125-130.
doi: 10.3969/j.issn.0254-0150.2022.07.018
[[18]]   李泽岩, 齐向阳, 吴承亮, 等. 液体静压轴承静态特性分析及其结构参数优化设计[J/OL]. 机电工程, 2025: 1-10 (2025-03-24) [2025-04-04]. .
LI Z Y, QI X Y, WU C L, et al. Static characteristics analysis and structural parameter optimization design of hydrostatic bearing[J/OL]. Journal of Mechanical & Electrical Engineering, 2025: 1-10 (2025-03-24) [2025-04-04]. .
[[19]]   黄小凯, 刘守文, 黄首清, 等. 基于响应面方法的轴承多应力加速模型建模与验证技术[J]. 哈尔滨工业大学学报, 2019, 51(7): 128-134.
HUANG X K, LIU S W, HUANG S Q, et al. Modeling and verification technology of bearing multi-stress acceleration model based on response surface method[J]. Journal of Harbin Institute of Technology, 2019, 51(7): 128-134.
[1] Caofeng YU,Yikai HU,Yongyong DUAN,Zixian WEI,Ning WANG. Response time optimization of high-pressure common rail giant magnetostrictive injector based on response surface method[J]. Chinese Journal of Engineering Design, 2025, 32(3): 373-382.
[2] Pei YANG,Minglu ZHANG,Lingyu SUN. Design analysis and structural parameter optimization for magnetic adsorption module of wall-climbing robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 592-602.
[3] Jinyun CAI,Zhong LIU,Gang WANG,Qingbin ZHAO,Ning AN,Xuwei DU,Dongliang LI,Yuanzhou LI. Optimization design of auxiliary tail rope pulling device for winch mill based on response surface methodology[J]. Chinese Journal of Engineering Design, 2024, 31(2): 178-187.
[4] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[5] Chun-jian HUA,Dong-dong LI,Yi JIANG,Jian-feng YU,Ying CHEN. Study on fatigue life of shaft with V-notch under dual-frequency excitation[J]. Chinese Journal of Engineering Design, 2023, 30(1): 102-108.
[6] Peng-cheng ZHANG,Jian-ye NIU,Cheng-lei LIU,Jing-ke SONG,Li-peng WANG,Jian-jun ZHANG. Mechanism parameter optimization and trajectory planning of traction lower limb rehabilitation robot[J]. Chinese Journal of Engineering Design, 2022, 29(6): 695-704.
[7] Qing-xiang LIU,Bing-jing GUO,Jian-hai HAN,Xiang-pan LI,Ming-xiang HUANG. Somatosensory interactive upper-limb mirror rehabilitation training robot system[J]. Chinese Journal of Engineering Design, 2022, 29(2): 143-152.
[8] ZHONG Dao-fang, TIAN Ying, ZHANG Ming-lu. Design and optimization of permanent magnet adsorption device for wheel-legged wall-climbing robot[J]. Chinese Journal of Engineering Design, 2022, 29(1): 41-50.
[9] WANG Chun-xiang, JI Kang-hui, WANG Yao, LIU Liu. Review of research on segmentation algorithm in rapid prototyping technology[J]. Chinese Journal of Engineering Design, 2021, 28(4): 399-406.
[10] YAN Bao-ming, PAN Wei-jie, Lü Jian, WANG Yi, ZHAO Ze-yu. Prediction of natural gesture interaction time for VR placement task[J]. Chinese Journal of Engineering Design, 2021, 28(3): 296-304.
[11] YAO Shou-wen, HU Zi-ran, LIU Bo-wen, DING Jia, CHANG Fu-xiang, LI Li-hui. Virtual reality aided maintenance training based on real-time assembly state perception and intuitive interaction[J]. Chinese Journal of Engineering Design, 2021, 28(1): 14-24.
[12] LI Dian-lun, HUANG Hua, DENG Wen-qiang. Optimization design of structure of the hydrostatic guideway of NC machine tool[J]. Chinese Journal of Engineering Design, 2020, 27(4): 448-455.
[13] ZHANG Fan, CHU Shao-wei, JI Na-ye. Chinese Braille encoding design for mobile terminal with variable-friction tactile[J]. Chinese Journal of Engineering Design, 2020, 27(2): 154-161.
[14] GAO Qi-sheng, ZHU Xing-hua, YU Yan-kai, ZHENG Rong. Multi-objective optimal design of UUV pressure structure[J]. Chinese Journal of Engineering Design, 2020, 27(2): 232-238.
[15] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.