Mechanical Strength Design |
|
|
|
|
Prediction of load spectrum for crane life cycle and structural optimal design based on fatigue life |
Qisong QI( ),Chenggang LI,Qing DONG,Yuhao CHEN,Hang XU |
School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China |
|
|
Abstract Crane has been subjected to alternating loads with different characteristics for a long time during service, resulting in a decrease in load-bearing capacity due to structure fatigue. In order to study the impact of load and stress changes on the fatigue life of crane structure during actual work, firstly, a neural network was used to analyze the load spectrum of crane during service and accurately predict the load characteristics, and the stress-time history of the crane during service was analyzed by combining the accurately predicted load spectrum and structural bearing characteristics; secondly, Miner's linear damage accumulation theory and linear elastic fracture mechanics method were used to predict the fatigue life of the key parts of the crane structure; finally, with the fatigue life and structural bearing capacity of the key parts of the crane structure as constraints, an optimization design model considering the load characteristics of the crane during service was established. Intelligent optimization algorithm was used to search for the optimum design variable combination globally to obtain the optimum design parameters of the crane structure that met the design requirements of fatigue life and bearing capacity. The research results showed the feasibility of the method combining the calculation of structural fatigue life with intelligent optimization algorithm in the optimization design of crane structure, providing a new approach for the lightweight design of crane structure.
|
Received: 14 June 2022
Published: 06 July 2023
|
|
起重机生命周期载荷谱预测及基于疲劳寿命的结构优化设计
起重机在服役期间长期承受具有不同特征的交变载荷的作用,其结构因疲劳而导致承载能力下降。为了研究在实际工作过程中载荷及应力变化对起重机结构疲劳寿命的影响,首先,利用神经网络对起重机在服役期间的载荷谱进行分析,准确预测其载荷特征,并结合预测的载荷谱及其结构承载特性分析起重机在服役期间的应力—时间历程;其次,利用Miner线性损伤累积理论和线弹性断裂力学法,预测起重机结构关键部位的疲劳寿命;最后,以起重机结构关键部位的疲劳寿命及结构承载能力为约束,建立考虑起重机服役期间载荷特征的优化设计模型,采用智能优化算法在全局范围内搜索最优设计变量组合,获取满足疲劳寿命和承载能力设计要求的起重机结构最佳设计参数。研究结果表明了结构疲劳寿命计算与智能优化算法相结合的方法在起重机结构优化设计中的可行性,为起重机结构的轻量化设计提供了全新的思路。
关键词:
起重机,
生命周期,
疲劳寿命,
优化设计
|
|
[1] |
LIU Z C, GUO S S, WANG L. Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption[J]. Journal of Cleaner Production, 2019, 211: 765-786.
|
|
|
[2] |
许文超,王登峰.基于疲劳寿命的驱动桥壳可靠性与轻量化设计[J].中国公路学报,2020,33(5):178-188. doi:10.3969/j.issn.1001-7372.2020.05.016 XU W C, WANG D F. Reliable and lightweight design for drive axle housing based on fatigue life[J]. China Journal of Highway and Transport, 2020, 33(5): 182-192.
doi: 10.3969/j.issn.1001-7372.2020.05.016
|
|
|
[3] |
吕中意,王振玉,王庆莲,等.绿色物流背景下的模块化可扩容快递箱设计[J].机械设计,2019,36(8):48-54. LÜ Z Y, WANG Z Y, WANG Q L, et al. Design of the modular expansible packing box in the context of green logistics[J]. Journal of Machine Design, 2019, 36(8): 48-54.
|
|
|
[4] |
程贤福,周健,肖人彬,等.面向绿色制造的产品模块化设计研究综述[J].中国机械工程,2020,31(21):2612-2625. doi:10.3969/j.issn.1004-132X.2020.21.012 CHENG X F, ZHOU J, XIAO R B, et al. Review of product modular design from perspective of green manufacturing[J]. China Mechanical Engineering, 2020, 31(21): 2612-2625.
doi: 10.3969/j.issn.1004-132X.2020.21.012
|
|
|
[5] |
杨瑞刚,刘玉珍,孟令军,等.起重机主梁结构可靠性混合模型的建立和分析[J].安全与环境学报,2021,21(5): 1897-1904. YANG R G, LIU Y Z, MENG L J, et al. Reliability analysis for the hybrid model of the crane structure[J]. Journal of Safety and Environment, 2021, 21(25): 1897-1904.
|
|
|
[6] |
李军,周伟,魏睿.基于混合GSA-GA的起重机主梁优化设计[J].机械设计与制造,2021(10):194-197. doi:10.3969/j.issn.1001-3997.2021.10.043 LI J, ZHOU W, WEI R. Optimization design of crane main beam based on hybrid GSA-GA[J]. Machinery Design & Manufacture, 2021(10): 194-197.
doi: 10.3969/j.issn.1001-3997.2021.10.043
|
|
|
[7] |
焦洪宇,周奇才,吴青龙,等.桥式起重机箱型主梁周期性拓扑优化设计[J].机械工程学报,2014, 50(23): 134-139. doi:10.3901/jme.2014.23.134 JIAO H Y, ZHOU Q C, WU Q L, et al. Periodic topology optimization of the box-type girder of bridge crane[J]. Journal of Mechanical Engineering, 2014, 50(23): 134-139.
doi: 10.3901/jme.2014.23.134
|
|
|
[8] |
SUN C L, TAN Y, ZENG J C, et al. The structure optimization of main beam for bridge crane based on an improved PSO[J]. Journal of Computers, 2011, 6(8): 1585-1590.
|
|
|
[9] |
渠晓刚,温鑫,张晓康.基于损伤力学的桥式起重机疲劳寿命分析[J].安全与环境学报,2021,21(3):1012-1016. QU X G, WEN X, ZHANG X K. Assessing and analysis of the fatigue life of the bridge-type crane based on the damage mechanics[J]. Journal of Safety and Environment, 2021, 21(3): 1012-1016.
|
|
|
[10] |
冯月贵,谢尧林,贾民平,等.基于顺序法的起重机疲劳寿命预测方法研究及应用[J].起重运输机械,2013(2):1-5. doi:10.3969/j.issn.1001-0785.2013.02.001 FENG Y G, XIE Y L, JIA M P, et al. Research and application of crane fatigue life prediction method based on sequential method[J]. Hoisting and Conveying Machinery, 2013(2): 1-5.
doi: 10.3969/j.issn.1001-0785.2013.02.001
|
|
|
[11] |
范小宁,徐格宁,王爱红.基于人工神经网络获取起重机当量载荷谱的疲劳剩余寿命估算方法[J].机械工程学报,2011,47(20):69-74. doi:10.3901/jme.2011.20.069 FAN X N, XU G N, WANG A H. Evaluation method of remaining fatigue life for crane based on the acquisition of the equivalent load spectrum by the artificial neural network[J]. Journal of Mechanical Engineering, 2011, 47(20): 69-74.
doi: 10.3901/jme.2011.20.069
|
|
|
[12] |
ÁVILA G, PALMA E, DE PAULA R. Crane girder fatigue life determination using SN and LEFM methods[J]. Engineering Failure Analysis, 2017, 79: 812-819.
|
|
|
[13] |
DONG Q, XU G N, XIN Y S. Fatigue residual life prediction of casting crane under track defect model[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2018, 12(4): JAMDSM0092-JAMDSM 0092.
|
|
|
[14] |
WANG J M, WANG R G, ZHU Y C, et al. Life cycle assessment and environmental cost accounting of coal-fired power generation in China[J]. Energy Policy, 2018, 115: 374-384.
|
|
|
[15] |
徐建全,杨沿平.基于Vensim的汽车轻量化全生命周期动态评价[J].计算机集成制造系统,2020,26(4):954-969. XU J Q, YANG Y P. Dynamic evaluation of lightweight automobile life cycle based on Vensim software[J]. Computer Integrated Manufacturing Systems, 2020, 26(4): 954-969.
|
|
|
[16] |
张旭辉,郭欢欢,马宏伟,等.基于生命周期的采煤机绿色评价方法研究及应用[J].煤炭科学技术,2021, 49(6): 205-212. ZHANG X H, GUO H H, MA H W. Research and application of green evaluation method for shearer based on life cycle[J]. Coal Science and Technology, 2021, 49(6): 205-212.
|
|
|
[17] |
徐航,戚其松,董青,等.基于模糊数学的起重机结构绿色评价设计技术[J].机械设计与研究,2021,37(1): 200-204,214. XU H, QI Q S, DONG Q, et al. Study on green evaluation and design of crane structure based on fuzzy mathematics[J]. Machine Design & Research, 2021, 37(1): 200-204, 214.
|
|
|
[18] |
WEN B, JIN Q, HUANG H, et al. Life cycle assessment of quayside crane: A case study in China[J]. Journal of Cleaner Production, 2017, 148: 1-11.
|
|
|
[19] |
顾复,顾新建,张武杰,等.透明公平的产品生命周期评价方法[J].中国机械工程,2018,29(21):2539-2545. doi:10.3969/j.issn.1004-132X.2018.21.004 GU F, GU X J, ZHANG W J, et al. Transparent and fair LCA method for products[J]. China Mechanical Engineering, 2018, 29(21): 2539-2545.
doi: 10.3969/j.issn.1004-132X.2018.21.004
|
|
|
[20] |
万力,徐格宁,顾迪民,等. 起重机设计规范: [S].北京:中国标准出版社,2008:9-30. WAN L, XU G N, GU D M, et al. Design rules for cranes: [S]. Beijing: China Standards Press, 2008: 9-30.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|