Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (3): 380-389    DOI: 10.3785/j.issn.1006-754X.2023.00.019
Mechanical Strength Design     
Prediction of load spectrum for crane life cycle and structural optimal design based on fatigue life
Qisong QI(),Chenggang LI,Qing DONG,Yuhao CHEN,Hang XU
School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
Download: HTML     PDF(1996KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Crane has been subjected to alternating loads with different characteristics for a long time during service, resulting in a decrease in load-bearing capacity due to structure fatigue. In order to study the impact of load and stress changes on the fatigue life of crane structure during actual work, firstly, a neural network was used to analyze the load spectrum of crane during service and accurately predict the load characteristics, and the stress-time history of the crane during service was analyzed by combining the accurately predicted load spectrum and structural bearing characteristics; secondly, Miner's linear damage accumulation theory and linear elastic fracture mechanics method were used to predict the fatigue life of the key parts of the crane structure; finally, with the fatigue life and structural bearing capacity of the key parts of the crane structure as constraints, an optimization design model considering the load characteristics of the crane during service was established. Intelligent optimization algorithm was used to search for the optimum design variable combination globally to obtain the optimum design parameters of the crane structure that met the design requirements of fatigue life and bearing capacity. The research results showed the feasibility of the method combining the calculation of structural fatigue life with intelligent optimization algorithm in the optimization design of crane structure, providing a new approach for the lightweight design of crane structure.



Key wordscrane      life cycle      fatigue life      optimal design     
Received: 14 June 2022      Published: 06 July 2023
CLC:  TH 215  
Cite this article:

Qisong QI,Chenggang LI,Qing DONG,Yuhao CHEN,Hang XU. Prediction of load spectrum for crane life cycle and structural optimal design based on fatigue life. Chin J Eng Design, 2023, 30(3): 380-389.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.019     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I3/380


起重机生命周期载荷谱预测及基于疲劳寿命的结构优化设计

起重机在服役期间长期承受具有不同特征的交变载荷的作用,其结构因疲劳而导致承载能力下降。为了研究在实际工作过程中载荷及应力变化对起重机结构疲劳寿命的影响,首先,利用神经网络对起重机在服役期间的载荷谱进行分析,准确预测其载荷特征,并结合预测的载荷谱及其结构承载特性分析起重机在服役期间的应力—时间历程;其次,利用Miner线性损伤累积理论和线弹性断裂力学法,预测起重机结构关键部位的疲劳寿命;最后,以起重机结构关键部位的疲劳寿命及结构承载能力为约束,建立考虑起重机服役期间载荷特征的优化设计模型,采用智能优化算法在全局范围内搜索最优设计变量组合,获取满足疲劳寿命和承载能力设计要求的起重机结构最佳设计参数。研究结果表明了结构疲劳寿命计算与智能优化算法相结合的方法在起重机结构优化设计中的可行性,为起重机结构的轻量化设计提供了全新的思路。


关键词: 起重机,  生命周期,  疲劳寿命,  优化设计 
Fig.1 Schematic diagram of universal overhead crane
符号参数数值单位
S跨度25.5m
Q起重量20t
K大车基距4 880mm
b小车轮距2 360
B小车轨道距离2 700
Pm满载小车轮压58.9kN
Pk空载小车轮压7.2
vq额定起升速度8.2m/min
vd大车运行速度60
sd小车轮极限位置480mm
Table 1 Design parameters of crane
符号参数数值单位跨中截面图跨端截面图
X1上翼缘板厚16mm
X2下翼缘板厚16
X3主腹板厚10
X4副腹板厚8
X5腹板间距500
X6腹板高度1 300
X7上翼缘板宽630
X8下翼缘板宽610
X9翼缘板最大外伸50
X10跨端腹板高度500
Az跨中截面面积43 240mm2
Ad跨端截面面积29 840
Iz跨中截面惯性矩1.19×1010mm4
Id跨端截面惯性矩1.53×109
Table 2 Cross-section parameters and their schemetics of crane main girder
工况力学模型计算项计算公式单位
工况1跨中弯矩Mz_1=18qS2+Fm2S-bN?mm
跨中剪力Fz_1=-?FmbSN
跨端剪力Fd_1=qS2+Fm1-?bS
跨中扭矩Tn_1=2FmlozN?mm
工况2跨中弯矩Mz_2=18qS2+12Fm2sd+bN?mm
跨中剪力Fz_2=-?Fm2sd+bSN
跨端剪力Fd_2=qS2+Fm2-?2sd+bS
跨端扭矩Tn_2=2FmlodN?mm
工况3跨中弯矩Mz_3=18qS2+12Fk2sd+bN?mm
跨中剪力Fz_3=-?Fk2sd+bSN
跨端剪力Fd_3=qS2+Fk2-?2sd+bS
跨中扭矩Tn_3=2FklozN?mm
工况4跨中弯矩Mz_4=18qS2+Fksd+b2N?mm
跨中剪力Fz_4=-?Fk2sd+bSN
跨端剪力Fd_4=qS2+Fk2sd+bS
跨端扭矩Tn_4=qS2+Fk2sd+bSN?mm
Table 3 Mechanical models and internal force calculation formulas of crane structure under different working conditions
截面应力类别符号计算公式最大应力工况最小应力工况
计算点①计算点②计算点①
跨中截面弯曲正应力σs式(4)69.4068.3718.38
弯曲切应力τz式(5)2.052.09-0.026
扭转切应力τn式(6)3.163.410.27
局部压应力σm式(7)057.510
合成应力σhz式(8)80.3264.2818.39
跨端截面弯曲切应力τd式(5)20.995.36
扭转切应力τn式(6)5.790.52
合成应力τhdτhd=τd+τn26.785.88
Table 4 Stress calculation formulas and results of crane structure
优化项参数数值
优化1优化2优化3优化5优化5单位
设计变量X1666106mm
X2666106
X366666
X466666
X5520520520450540
X61 5001 5001 5001 3501 490
其他变量X7644574664
X8624554644
X9505050
X10500450500
结构承载能力指标跨中最大正应力124.30114.38123.45MPa
跨端最大正应力44.4548.2844.40
跨中最大变形25.3725.4125.34mm
目标函数f (X)25 60827 48025 728mm2
Table 5 Structural optimization results of crane main girder
Fig.2 Optimization iterative curves for crane main girder structure
编号i起升载荷Qit/t循环数ti/次编号i起升载荷Qit/t循环数ti/次编号i起升载荷Qit/t循环数ti/次
119.2921015.2811910.253
217.4851115.0522010.043
317.0981214.886218.842
416.8681312.857228.657
516.6771412.650238.431
616.4571512.253247.642
715.8631611.671256.850
815.6921711.464266.635
915.4631810.658276.443
Table 6 Characteristic parameters of crane load spectrum
Fig.3 Prediction model of crane load spectrum
Fig.4 Comparison of predicted and actual cycle times of crane
Fig.5 Stress-time history of crane structure (partial)
Fig.6 Optimization process of crane structure
Fig.7 Optimization iterative curves for cross-section area of the crane main girder span
Fig.8 Variation curves of fatigue life of crane structure
参数数值单位
优化1优化2优化3优化4优化5优化6优化7
X1168810121214mm
X2168810121214
X36666666
X46666666
X5400550550550440440420
X61 1901 4701 4701 3101 3101 3101 240
Az30 72828 26428 26429 00029 01629 01629 832mm2
Nf56.7050.0250.0250.0750.3150.3152.99a
σmax104.45106.94106.94107.52107.35107.35106.14MPa
fmax25.4521.7321.7324.2824.2124.2125.06mm
Table 7 Optimization results of crane structure based on fatigue life
性能指标数值单位较原设计的变化率/%
原设计

基于结构静态承载

能力的优化

基于疲劳寿命的

优化

基于结构静态承载能力的优化基于疲劳寿命的优化
截面面积43 24025 60828 264mm2-40.78-34.63
最大正应力80.32124.30106.94MPa54.7633.14
最大变形16.4125.3721.73mm54.6032.42
疲劳寿命150.0929.8650.02a-80.11-66.67
Table 8 Comparison of crane structural performance indicators before and after optimization design
[1]   LIU Z C, GUO S S, WANG L. Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption[J]. Journal of Cleaner Production, 2019, 211: 765-786.
[2]   许文超,王登峰.基于疲劳寿命的驱动桥壳可靠性与轻量化设计[J].中国公路学报,2020,33(5):178-188. doi:10.3969/j.issn.1001-7372.2020.05.016
XU W C, WANG D F. Reliable and lightweight design for drive axle housing based on fatigue life[J]. China Journal of Highway and Transport, 2020, 33(5): 182-192.
doi: 10.3969/j.issn.1001-7372.2020.05.016
[3]   吕中意,王振玉,王庆莲,等.绿色物流背景下的模块化可扩容快递箱设计[J].机械设计,2019,36(8):48-54.
LÜ Z Y, WANG Z Y, WANG Q L, et al. Design of the modular expansible packing box in the context of green logistics[J]. Journal of Machine Design, 2019, 36(8): 48-54.
[4]   程贤福,周健,肖人彬,等.面向绿色制造的产品模块化设计研究综述[J].中国机械工程,2020,31(21):2612-2625. doi:10.3969/j.issn.1004-132X.2020.21.012
CHENG X F, ZHOU J, XIAO R B, et al. Review of product modular design from perspective of green manufacturing[J]. China Mechanical Engineering, 2020, 31(21): 2612-2625.
doi: 10.3969/j.issn.1004-132X.2020.21.012
[5]   杨瑞刚,刘玉珍,孟令军,等.起重机主梁结构可靠性混合模型的建立和分析[J].安全与环境学报,2021,21(5): 1897-1904.
YANG R G, LIU Y Z, MENG L J, et al. Reliability analysis for the hybrid model of the crane structure[J]. Journal of Safety and Environment, 2021, 21(25): 1897-1904.
[6]   李军,周伟,魏睿.基于混合GSA-GA的起重机主梁优化设计[J].机械设计与制造,2021(10):194-197. doi:10.3969/j.issn.1001-3997.2021.10.043
LI J, ZHOU W, WEI R. Optimization design of crane main beam based on hybrid GSA-GA[J]. Machinery Design & Manufacture, 2021(10): 194-197.
doi: 10.3969/j.issn.1001-3997.2021.10.043
[7]   焦洪宇,周奇才,吴青龙,等.桥式起重机箱型主梁周期性拓扑优化设计[J].机械工程学报,2014, 50(23): 134-139. doi:10.3901/jme.2014.23.134
JIAO H Y, ZHOU Q C, WU Q L, et al. Periodic topology optimization of the box-type girder of bridge crane[J]. Journal of Mechanical Engineering, 2014, 50(23): 134-139.
doi: 10.3901/jme.2014.23.134
[8]   SUN C L, TAN Y, ZENG J C, et al. The structure optimization of main beam for bridge crane based on an improved PSO[J]. Journal of Computers, 2011, 6(8): 1585-1590.
[9]   渠晓刚,温鑫,张晓康.基于损伤力学的桥式起重机疲劳寿命分析[J].安全与环境学报,2021,21(3):1012-1016.
QU X G, WEN X, ZHANG X K. Assessing and analysis of the fatigue life of the bridge-type crane based on the damage mechanics[J]. Journal of Safety and Environment, 2021, 21(3): 1012-1016.
[10]   冯月贵,谢尧林,贾民平,等.基于顺序法的起重机疲劳寿命预测方法研究及应用[J].起重运输机械,2013(2):1-5. doi:10.3969/j.issn.1001-0785.2013.02.001
FENG Y G, XIE Y L, JIA M P, et al. Research and application of crane fatigue life prediction method based on sequential method[J]. Hoisting and Conveying Machinery, 2013(2): 1-5.
doi: 10.3969/j.issn.1001-0785.2013.02.001
[11]   范小宁,徐格宁,王爱红.基于人工神经网络获取起重机当量载荷谱的疲劳剩余寿命估算方法[J].机械工程学报,2011,47(20):69-74. doi:10.3901/jme.2011.20.069
FAN X N, XU G N, WANG A H. Evaluation method of remaining fatigue life for crane based on the acquisition of the equivalent load spectrum by the artificial neural network[J]. Journal of Mechanical Engineering, 2011, 47(20): 69-74.
doi: 10.3901/jme.2011.20.069
[12]   ÁVILA G, PALMA E, DE PAULA R. Crane girder fatigue life determination using SN and LEFM methods[J]. Engineering Failure Analysis, 2017, 79: 812-819.
[13]   DONG Q, XU G N, XIN Y S. Fatigue residual life prediction of casting crane under track defect model[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2018, 12(4): JAMDSM0092-JAMDSM 0092.
[14]   WANG J M, WANG R G, ZHU Y C, et al. Life cycle assessment and environmental cost accounting of coal-fired power generation in China[J]. Energy Policy, 2018, 115: 374-384.
[15]   徐建全,杨沿平.基于Vensim的汽车轻量化全生命周期动态评价[J].计算机集成制造系统,2020,26(4):954-969.
XU J Q, YANG Y P. Dynamic evaluation of lightweight automobile life cycle based on Vensim software[J]. Computer Integrated Manufacturing Systems, 2020, 26(4): 954-969.
[16]   张旭辉,郭欢欢,马宏伟,等.基于生命周期的采煤机绿色评价方法研究及应用[J].煤炭科学技术,2021, 49(6): 205-212.
ZHANG X H, GUO H H, MA H W. Research and application of green evaluation method for shearer based on life cycle[J]. Coal Science and Technology, 2021, 49(6): 205-212.
[17]   徐航,戚其松,董青,等.基于模糊数学的起重机结构绿色评价设计技术[J].机械设计与研究,2021,37(1): 200-204,214.
XU H, QI Q S, DONG Q, et al. Study on green evaluation and design of crane structure based on fuzzy mathematics[J]. Machine Design & Research, 2021, 37(1): 200-204, 214.
[18]   WEN B, JIN Q, HUANG H, et al. Life cycle assessment of quayside crane: A case study in China[J]. Journal of Cleaner Production, 2017, 148: 1-11.
[19]   顾复,顾新建,张武杰,等.透明公平的产品生命周期评价方法[J].中国机械工程,2018,29(21):2539-2545. doi:10.3969/j.issn.1004-132X.2018.21.004
GU F, GU X J, ZHANG W J, et al. Transparent and fair LCA method for products[J]. China Mechanical Engineering, 2018, 29(21): 2539-2545.
doi: 10.3969/j.issn.1004-132X.2018.21.004
[20]   万力,徐格宁,顾迪民,等. 起重机设计规范: [S].北京:中国标准出版社,2008:9-30.
WAN L, XU G N, GU D M, et al. Design rules for cranes: [S]. Beijing: China Standards Press, 2008: 9-30.
[1] Yumin HE,Ying HAN,Jing ZHOU. Research on adaptive sliding mode control of tower crane based on improved fruit fly optimization algorithm[J]. Chin J Eng Design, 2023, 30(3): 271-280.
[2] Chun-jian HUA,Dong-dong LI,Yi JIANG,Jian-feng YU,Ying CHEN. Study on fatigue life of shaft with V-notch under dual-frequency excitation[J]. Chin J Eng Design, 2023, 30(1): 102-108.
[3] HAO Chun-yong, WANG Dong-liang, ZHENG Jin-yang, XU Ping, GU Chao-hua. Research on the relationship between burst pressure and fatigue life of composite hydrogen storage tank with aluminum liner[J]. Chin J Eng Design, 2021, 28(5): 594-601.
[4] ZHANG Jin, LIU Pei-shan, YIN Yu-feng. Design and dynamic characteristics analysis of Y-shaped rotary ultrasonic motor[J]. Chin J Eng Design, 2021, 28(2): 248-254.
[5] SUN Yue-hai, TANG Er-xing. Optimal design of basic parameters of spiral bevel gears[J]. Chin J Eng Design, 2020, 27(5): 616-624.
[6] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chin J Eng Design, 2020, 27(2): 239-246.
[7] CHEN Zhen, ZHOU Yang, JING Shuang, HUANG Zhi-qiang, CHEN Yan. Study on damage mechanism and fatigue life prediction of seismic vibrator baseplate[J]. Chin J Eng Design, 2019, 26(6): 658-665.
[8] LI Song-mei, ZHENG Zhe, LI Shuai-shuai, CHANG De-gong. Structure and fatigue life analysis of damping type tripod universal joint[J]. Chin J Eng Design, 2019, 26(5): 520-526.
[9] REN Zhong, XU Ge-ning, DONG Qing, LU Feng-yi, XU Tong. Lightweight design of main beam for bridge crane based on AFSA-GA serial algorithm[J]. Chin J Eng Design, 2019, 26(2): 197-205.
[10] HUANG Zhi-qiang, XU Zi-yang, MU Xin-ming, LIANG Chun-ping, TANG Yu-jie. Design and analysis of semi-active crane heave compensation test rig[J]. Chin J Eng Design, 2019, 26(2): 215-222.
[11] WANG Gang, HUANG Ling-hui, LIU Jin-jun. Research on dynamic stress and fatigue life for ultra-deep mine hoist drum[J]. Chin J Eng Design, 2018, 25(6): 703-710.
[12] DENG Xing, YU Lan-feng, LEI Cong, XU Jiang-ping, XIAO Ze-ping. Lightweight design of trackless telescopic gantry crane based on response surface method[J]. Chin J Eng Design, 2018, 25(3): 288-294.
[13] DENG Xing, YU Lan-feng, LEI Cong, XU Jiang-ping, XIAO Ze-ping. Research on contact problem of trackless telescopic gantry crane[J]. Chin J Eng Design, 2018, 25(1): 79-84,93.
[14] CAI Yu-qiang, ZHU Dong-sheng. Analysis of crankshaft fatigue life of high-speed crank press based on dynamics simulation[J]. Chin J Eng Design, 2017, 24(6): 680-686.
[15] LIU Wen, ZHANG Jin-hong, LIN Teng-jiao, YANG Yun, CAI Yun-long. Prediction and research on influencing factors of structural noise of bridge crane with three-point support[J]. Chin J Eng Design, 2017, 24(5): 580-587,594.