Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (3): 372-379    DOI: 10.3785/j.issn.1006-754X.2023.00.035
Tribology and Surface/Interface Technology     
Research on crack detection of butt welds in the cladding panel of spent fuel pool
Jia ZHANG1(),Zhaoming ZHOU1,2(),Zhanghua LIAN1,Kai LI3,Zhi CHEN4
1.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
2.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
3.State Nuclear Power Plant Service Company, Shanghai 200233, China
4.Sichuan Changning Natural Gas Development Co. , Ltd. , PetroChina Southwest Oil and Gasfield Company, Chengdu 610051, China
Download: HTML     PDF(4273KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Cracks at the interface between the weld in the cladding panel of spent fuel pool of a nuclear power plant and the base material can seriously affect the operational safety of the equipment. Considering the true characteristics of weld, alternating current field measurement (ACFM) technology was proposed to detect weld crack to improve the sensitivity of crack detection. Firstly, a weld crack detection model was established by COMSOL software, and the magnetic field characteristic signals in the weld crack area were analyzed; secondly, an artificial crack that was consistent with the numerical simulation was preset at the interface between the experimental specimen weld and the base material, and then the weld crack ACFM experiment was carried out; finally, a weld crack detection system was developed and its performance testing was conducted. The simulation, experiment and testing results indicated that the ACFM method could effectively identify crack parallel to the weld direction at the interface between the weld and the base metal, but could not identify crack perpendicular to the weld direction; the deviation of crack detection length obtained through the testing of the weld crack detection system was smaller than that obtained through the probe detection experiment, but the two were relatively close, proving the rationality of the design of the weld crack detection system. ACFM can achieve quantitative detection of butt welds in the cladding panel of spent fuel pool, and meet the requirements of high sensitivity in the field.



Key wordsspent fuel pool      weld crack      electromagnetic testing     
Received: 15 September 2022      Published: 06 July 2023
CLC:  TH878.3  
Corresponding Authors: Zhaoming ZHOU     E-mail: zhangjiaswpu@163.com;Zhouzhaom@126.com
Cite this article:

Jia ZHANG,Zhaoming ZHOU,Zhanghua LIAN,Kai LI,Zhi CHEN. Research on crack detection of butt welds in the cladding panel of spent fuel pool. Chin J Eng Design, 2023, 30(3): 372-379.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.035     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I3/372


乏燃料水池覆面板对接焊缝裂纹检测研究

核电站乏燃料水池覆面板焊缝与母材交界面处的裂纹会严重影响设备的运行安全。考虑焊缝的真实特性,提出采用交流电磁场检测(alternating current field measurement,ACFM)技术来检测焊缝裂纹,以提高裂纹检测的灵敏度。首先,采用COMSOL软件建立了焊缝裂纹检测模型,分析了焊缝裂纹区域的磁场特征信号;其次,在实验试件焊缝与母材交界面处预置与数值仿真一致的人工裂纹,进行焊缝裂纹ACFM实验;最后,制作了焊缝裂纹检测系统,并进行了其性能测试。仿真、实验和测试结果表明:ACFM方法能够有效识别焊缝与母材交界面处平行于焊缝方向的裂纹,而不能识别垂直于焊缝方向的裂纹;通过焊缝裂纹检测系统测试得到的裂纹检测长度的偏差小于探头检测实验的偏差,但两者比较接近,证明了焊缝裂纹检测系统设计的合理性。ACFM能够实现乏池覆面板对接焊缝裂纹的定量化检测,满足现场高灵敏度的使用要求。


关键词: 乏燃料水池,  焊缝裂纹,  电磁检测 
Fig.1 Schematic diagram of the effect of crack on current and magnetic field
Fig.2 Simplified model of spent fuel pool cladding panel
部件材料长度×宽度×深度(高度)/mm×mm×mm相对磁导率电导率/(S·m-1)
试件碳钢工件焊缝裂纹1.000 02138 000 000
300×300×1020×0.3×8
U形铁芯锰-锌铁氧体60×10×404 00010 300 000
Table 1 Parameters of weld crack detection model
Fig.3 Grid division of weld crack detection model
Fig.4 Stress distribution on the surface of workpiece
Fig.5 Magnetic field distribution around the crack
Fig.6 Size and location of weld cracks
Fig.7 ACFM results of weld cracks
序号裂纹长度检测长度偏差探头检测方向
2019.80.2平行于裂纹方向
2019.40.6
2525.10.1
1011.41.4
10垂直于裂纹方向
Table 2 ACFM simulation results of weld crack length
Fig.8 ACFM experiment site for weld cracks
Fig.9 ACFM experimental results of weld cracks
序号裂纹长度检测长度偏差探头检测方向
2018.41.6平行于裂纹方向
2017.82.2
2523.11.9
107.92.1
10垂直于裂纹方向
Table 3 ACFM experimental results of weld crack length
Fig.10 Detection system of butt weld crack in the cladding panel of spent fuel pool
Fig.11 Detection signal of weld cracks
序号裂纹长度检测长度偏差探头检测方向
2019.01.0平行于裂纹方向
2018.21.8
2523.41.6
108.11.9
10垂直于裂纹方向
Table 4 Testing results of weld crack length
方法裂纹①裂纹②裂纹③裂纹④
数值仿真0.20.60.11.4
探头实验1.62.21.92.1
检测系统测试1.01.81.61.9
Table 5 Deviation of weld crack detection length under different methods
[1]   DOVER W D, COLLINS R, MICHAEL D H. Review of developments in ACPD and ACFM[J]. British Journal of Non-Destructive Testing, 1991, 33(3): 121-127.
[2]   袁新安,李伟,殷晓康,等. 基于ACFM的奥氏体不锈钢不规则裂纹可视化重构方法研究[J]. 机械工程学报, 2020,56(10):43-49. doi:10.3901/jme.2020.10.027
YUAN X A, LI W, YIN X K, et al. Research on visualization reconstruction method of irregular crack of austenitic stainless steel based on ACFM[J]. Journal of Mechanical Engineering, 2020, 56(10): 43-49.
doi: 10.3901/jme.2020.10.027
[3]   倪春生,陈国明,李伟. ACFM探测线圈的结构优化及试验测试[J]. 传感技术学报,2007(2):370-373. doi:10.3969/j.issn.1004-1699.2007.02.030
NI C S, CHEN G M, LI W. Structure optimization and test of ACFM detection coil[J]. Chinese Journal of Sensors and Actuators, 2007(2): 370-373.
doi: 10.3969/j.issn.1004-1699.2007.02.030
[4]   YUAN X A, LI W, YIN X K, et al. Identification of tiny surface cracks in a rugged weld by signal gradient algorithm using the ACFM technique[J]. Sensors, 2020, 20(2): 380.
[5]   XIAO X, GAO B, WOO W L, et al. Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography[J]. Infrared Physics & Technology, 2018, 90: 133-145.
[6]   吴德会,游德海,柳振凉,等. 交流漏磁检测法趋肤深度的机理与实验研究[J]. 仪器仪表学报,2014,35(2): 327-336.
WU D H, YOU D H, LIU Z L, et al. Mechanism and experimental study of skin depth by AC magnetic flux leakage detection[J]. Chinese Journal of Scientific Instrument, 2014, 35(2): 327-336.
[7]   郑玲慧,任尚坤,王景林. ACFM技术的表面裂纹识别和尺寸反演算法研究[J]. 测控技术,2020,39(5):80-85.
ZHENG L H, REN S K, WANG J L. Surface crack identification and size inversion algorithm based on ACFM technology[J]. Measurement & Control Technology, 2020, 39(5): 80-85.
[8]   王勇,沈功田,李邦宪,等. 压力容器无损检测-大型常压储罐的无损检测技术[J]. 无损检测,2005,27(9): 487-490.
WANG Y, SHEN G T, LI B X, et al. Nondestructive testing of pressure vessels: Nondestructive testing of large atmospheric storage tanks[J]. Nondestructive Testing, 2005, 27(9): 487-490.
[9]   WILSON J W, TIAN G Y. Pulsed electromagnetic methods for defect detection and characterisation[J]. NDT & E International, 2007, 40(4): 275-283.
[10]   唐莺,罗飞路,潘孟春. 独立分量分析在交变磁场测量信号处理中的应用[J]. 计量技术,2008,4(12):28-31.
TANG Y, LUO F L, PAN M C. Application of independent component analysis in signal processing of alternating magnetic field measurement[J]. Metrology Science and Technology, 2008, 4(12): 28-31.
[11]   ZHAO J M, LI W, YUAN X A, et al. Detection system development of drill pipe thread based on ACFM technique[J]. IEEE Sensors Journal, 2021, 21(21): 23926-23933.
[12]   孙露萍,闫志鸿,王俊涛,等. 不锈钢薄板激光焊缝缺陷检测与识别[J]. 热加工工艺,2021(19):109-113.
SUN L P, YAN Z H, WANG J T, et al. Detection and identification of weld defects in laser welding of stainless steel sheet[J]. Hot Working Technology, 2021(19): 109-113.
[13]   贾登,丁铁恒,骆学理,等. 一种水下阵列式ACFM检测系统样机的设计与实现[J].国外电子测量技术, 2021, 40(4):150-157.
JIA D, DING T H, LUO X L, et al. Design and implementation of a prototype of underwater array ACFM detection system[J]. Foreign Electronic Measurement Technology, 2021, 40(4): 150-157.
[14]   周兆明,张佳,谷翠琳. 基于交流电磁场裂纹缺陷识别仿真研究[J].中国安全生产科学技术,2018,14(12):146-151.
ZHOU Z M, ZHANG J, GU C L. Simulation research on crack defect identification based on AC electromagnetic field[J]. Journal of Safety Science and Technology, 2018, 14(12): 146-151.
[15]   FOSTER E A, BOLTON G, BERNARD R, et al. Automated real-time eddy current array inspection of nuclear assets[J]. Sensors, 2022, 22(16): 6036.
[16]   陈涛,董袁航,张赛,等. 高压电缆铝护套焊缝缺陷ACFM检测方法及检测系统的研究[J]. 工程设计学报,2022,29(3):394-400. doi:10.3785/j.issn.1006-754X.2022.00.037
CHEN T, DONG Y H, ZHANG S, et al. Research on ACFM detection method and detection system of aluminum sheath weld defects in high voltage cable[J]. Chinese Journal of Engineering Design, 2022, 29(3): 394-400.
doi: 10.3785/j.issn.1006-754X.2022.00.037
[17]   葛玖浩,杨晨开,胡宝旺,等. 交流电磁场检测技术钢轨表面裂纹高速检测研究[J].机械工程学报,2021,57(18):66-74.
GE J H, YANG C K, HU B W, et al. Research on high-speed detection of rail surface crack based on AC electromagnetic field detection technology[J]. Journal of Mechanical Engineering, 2021, 57(18): 66-74.
[18]   李伟,袁新安,陈国明,等. 基于ACFM的隔水管表面裂纹链式阵列检测探头设计与试验研究[J]. 机械工程学报,2017,53(8):8-15.
LI W, YUAN X A, CHEN G M, et al. Design and experimental study of chain array detection probe for surface crack of riser based on ACFM[J]. Journal of Mechanical Engineering, 2017, 53(8): 8-15.
[19]   李锴,钟志民,孟令强.压水堆核电厂乏燃料水池失效分析与预防初探[J].金属热处理,2019,44():435-440.
LI K, ZHONG Z M, MENG L Q. Failure analysis and prevention of spent fuel pool in pressurized water reactor nuclear power plant[J]. Heat Treatment of Metals, 2019, 44(): 435-440.
No related articles found!