Please wait a minute...
Chinese Journal of Engineering Design  2019, Vol. 26 Issue (6): 706-713    DOI: 10.3785/j.issn.1006-754X.2019.00.003
Modeling, Simulation, Analysis, and Decision     
Stability analysis of 7-DOF dual-arm cooperative robot operation
HE Xiao-ying1,2, GAO Xing-yu1,2, WANG Hai-jian1,2, PENG Yan-hua1,2, LI Yu1,2
1.School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
2.Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, Guilin University of Electronic Technology, Guilin 541004, China
Download: HTML     PDF(2337KB)
Export: BibTeX | EndNote (RIS)      

Abstract  To verify the adaptability and stability of the 7-DOF (7 degree-of-free) dual-arm cooperative robot operation in the complex environment, and to improve the working efficiency and coordination performance, a numerical analysis method combining MATLAB and ADAMS was proposed to analyze and calculate the space operation mode of 7-DOF dual-arm cooperative robot. Firstly, the three-dimensional model of 7-DOF dual-arm cooperative robot was established in Solidworks. Secondly, the kinematics inverse solution of 7-DOF manipulator was calculated by using the numerical analysis method combining MATLAB and ADAMS. Finally, the control method based on virtual dynamics model was used to simulate the 7-DOF dual-arm cooperative robot clamping and moving operation in complex environment, the kinematics inverse solution was verified, and the adaptability and stability of the 7-DOF dual-arm cooperative robot were analyzed. The simulation results showed that the X-direction error, Y-direction error, and Z-direction error of the dual-arm reaching the target position were 0.6, 0.5 and 0.9 mm, respectively. In addition, the average error of the dual-arm reaching the goal position was 0.5 mm, and the success rate of dual-arm co-grasping target was 99.1%. It is suggested that the kinematics inverse solution of 7-DOF manipulator can satisfy the expectation, and the adaptability and stability of the 7-DOF dual-arm cooperative robot operation in the complex environment have increased.

Key words7-DOF manipulator      kinematics      inverse kinematics      operation     
Received: 17 June 2019      Published: 28 December 2019
CLC:  TP 242  
Cite this article:

HE Xiao-ying, GAO Xing-yu, WANG Hai-jian, PENG Yan-hua, LI Yu. Stability analysis of 7-DOF dual-arm cooperative robot operation. Chinese Journal of Engineering Design, 2019, 26(6): 706-713.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2019.00.003     OR     https://www.zjujournals.com/gcsjxb/Y2019/V26/I6/706


七自由度双臂协作机器人操作稳定性分析

为了验证七自由度双臂协作机器人在复杂环境下的操作适应性和稳定性,以及提高机器人工作效率和协调性能,提出一种结合MATLAB和ADAMS的数值分析方法,对七自由度双臂协作机器人的空间运作模式进行分析和计算。首先,在Solidworks中建立七自由度双臂协作机器人的三维模型;然后,运用结合MATLAB和ADAMS的数值分析方法计算七自由度机械臂的运动学逆解;最后,运用基于虚拟动力学模型的控制方法,仿真七自由度双臂协作机器人在复杂环境下的夹取与搬运作业,以验证运动学逆解和分析双臂作业的适应性和稳定性。由仿真结果得到:双臂到达目标位置的X向误差为0.6 mm,Y向误差为0.5 mm,Z向误差为0.9 mm;到达预设位置的平均误差为0.5 mm;双臂协同抓取目标物成功率可达99.1%。由此可见,七自由度机械臂的运动学逆解满足预期要求,七自由度双臂协作机器人在复杂环境下的操作适应性和稳定性有所增强。

关键词: 七自由度机械臂,  运动学,  逆解,  操作 
[1] SHI L L, JAYAKOBY H, KATUPITIYA J, et al. Coordinated control of a dual-arm space robot[J]. IEEE Robotics & Automation Magazine, 2018, 25(4): 86-95.doi:10.1016/j.actaastro.2017.06.009
[2] 刘冠隆,贺晓莹,高兴宇,等. 基于旋量理论的七自由度双臂机器人正向运动学和工作空间分析研究[J].机械科学与技术,2019,38(5):704-712. doi:10.13433/j.cnki.1003-8728.20180240 LIU Guan-long, HE Xiao-ying, GAO Xing-yu, et al. The forward kinematics and workspace analysis of the screw theory of seven DOF dual-arm robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 704-712.
[3] TUAN L A, JOO Y H, TIEN L Q, et al. Adaptive neural network second-order sliding mode control of dual arm robots[J]. International Journal of Control Automation and Systems, 2017, 15(6): 2883-2891.doi:10.1007/s12555-017-0026-1
[4] KALLU K D, JIE W, LEE M C. Sensorless reaction force estimation of the end effector of a dual-arm robot manipulator using sliding mode control with a sliding perturbation observer[J]. International Journal of Control Automation and Systems, 2018, 16(3): 1367-1378. doi:10.1007/s12555-017-0154-7
[5] JIN S, BAE J, KIM J, et al. Disturbance compensation of a dual-arm underwater robot via redundant parallel mechanism theory[J]. Meccanica, 2017, 52(7): 1711-1719. doi:10.1007/s11012-016-0505-0
[6] TALASAZ A, TREJOS A L, PATEL R V. The role of direct and visual force feedback in suturing using a 7-DOF dual-arm teleoperated system[J]. IEEE Transactions on Haptics, 2017, 10(2): 276-287. doi:10.1109/toh.2016.2616874
[7] YAO Yao, WENG Zheng-xin. A motion simulation for dual-arm robot based on the state-space method[C]//2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, Jul. 17, 2017. doi:10.1109/CCDC.2017.7979370
[8] 刘卫朋, 邢关生, 陈海永, 等. 基于增强学习的机械臂轨迹跟踪控制[J].计算机集成制造系统,2018,24(8): 1996-2004. doi:10.13196/j.cims.2018.08.011 LIU Wei-peng, XING Guan-sheng, CHEN Hai-yong, et al. Robotic trajectory tracking control method based on reinforcement learning[J]. Computer Integrated Manufacturing Systems, 2018, 24(8): 1996-2004.
[9] ZHANG Fu-hai, QU Jia-di, LIU He, et al. A pose/force symmetric coordination method for a redundant dual-arm robot[J]. Assembly Automation, 2018, 38(5): 678-688.doi:10.1108/AA-12-2017-171
[10] CHOI Y, KIM D, HWANG S, et al. Dual-arm robot motion planning for collision avoidance using B-spline curve[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(6): 835-843. doi:10.1007/s12541-017-0099-z
[11] LIU Yi-cheng, YU Chun-xiao, SHENG Jing-yuan, et al. Self-collision avoidance trajectory planning and robust control of a dual-arm space robot[J]. International Journal of Control Automation and Systems, 2018, 16(6): 2896-2905. doi:10.1007/s12555-017-0757-z
[12] 崔泽,韩增军. 基于自运动的仿人七自由度机械臂逆解算法[J].上海大学学报(自然科学版),2012,18(6): 589-595. doi:10.3969/j.issn.1007-2861.2012.06.008 CUI Ze, HAN Zeng-jun. Inverse kinematics algorithm of 7-DOF manipulator based on self-motion[J]. Journal of Shanghai University (Natural Science Edition), 2012, 18(6): 589-595.
[13] 徐立云,蔡炳杰,杨连生,等. 复杂机器人工位布局与运动时间的协同优化[J].计算机集成制造系统,2016,22(8):1867-1876. doi:10.13196/j.cims.2016.08.005 XU Li-yun, CAI Bing-jie, YANG Lian-sheng, et al. Collaborative optimization between station layout and robotic motion time for complicated stations[J]. Computer Integrated Manufacturing Systems, 2016, 22(8): 1867-1876.
[14] 郑帅印. 七自由度仿人臂面向高速运动物体作业的轨迹规划[D].苏州:苏州大学机电工程学院,2018:26-40. ZHENG Shuai-yin. Trajectory optimization of 7-DOF humanoid manipulator for high speed movement target abstract[D]. Suzhou: Soochow University, School of Mechanical and Electrical Engineering, 2018: 26-40.
[15] 张建华,许晓林,刘璇,等. 双臂协调机器人相对动力学建模[J].机械工程学报,2019,55(3):34-42. doi:10.1109/robio.2018.8665193 ZHANG Jian-hua, XU Xiao-lin, LIU Xuan, et al. Relative dynamic modeling of dual-arm coordination robot[J]. Journal of Mechanical Engineering, 2019, 55(3): 34-42.
[16] 李明枫,贺晓莹,陆佳琪,等. 基于机器视觉的机器人智能分拣实验平台开发[J].实验技术与管理,2019,4(36):1002-4956. doi:10.16791/j.cnki.sjg.2019.04.021 LI Ming-feng, HE Xiao-ying, LU Jia-qi, et al. Development of robot intelligent sorting experimental platform based on machine vision[J]. Experimental Technology and Management, 2019, 4(36): 1002-4956.
[17] GARCIA N, SUAREZ R, ROSELL J. Task-dependent synergies for motion planning of an anthropomorphic dual-arm system[J]. IEEE Transactions on Robotics, 2017, 33(3): 756-764. doi:10.1109/TRO.2017.2676131
[18] FLEISCHER H, BAUMANN D, JOSHI S, et al. Analytical measurements and efficient process generation using a dual-arm robot equipped with electronic pipettes[J]. Energies, 2018, 11(10): 2567.doi:10.3390/en11102567
[1] Chun-yan ZHANG,Bing DING,Zhi-qiang HE,Jie YANG. Kinematics analysis and optimization of rotary multi-legged bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(3): 327-338.
[2] WANG Ya-kun, REN Jia-jun, LI Ai-feng, MENG Hao-nan. Layout optimization design of operation interface in mining excavator cab[J]. Chinese Journal of Engineering Design, 2020, 27(4): 469-477.
[3] WEI Ya-jun, QIU Guo-liang, DING Guang-he, YANG Liang, LIU Heng. A structural optimization design method for heavy-duty palletizing robot[J]. Chinese Journal of Engineering Design, 2020, 27(3): 332-339.
[4] ZHANG Jun-bao, HOU Hong-juan, CUI Guo-hua, LIU Jian. Research on number and position distribution of ropes for a class of rigid-flexible cooperative hybrid robot mechanism[J]. Chinese Journal of Engineering Design, 2020, 27(3): 364-372.
[5] LIU Zhuo, LIAN Bin-bin, LI Qi. Kinematic analysis of Exechon parallel robot based on finite and instantaneous screw theory[J]. Chinese Journal of Engineering Design, 2020, 27(3): 357-363.
[6] ZHANG Jun-bao, HOU Hong-juan, LIU Jian, SUN Ding-ding, XIE Lei-lei. Research on rigid-flexible 3CD/2RPU-SPR friction stir welding robot[J]. Chinese Journal of Engineering Design, 2020, 27(2): 172-181.
[7] LI Jing, ZHU Ling-yun, GOU Xiang-feng. Kinematics analysis of lower limb rehabilitation exoskeleton mechanism based on human-machine closed chain[J]. Chinese Journal of Engineering Design, 2019, 26(1): 65-72,109.
[8] JIA Hui-bo, LI Cheng-yu, WU Xiao-jun, LIU Xiao-qing, LI Yan-lei. Guidance mechanism design of omnidirectional AGV and its motion control research[J]. Chinese Journal of Engineering Design, 2018, 25(5): 546-552.
[9] GAO Zheng, WANG Lu, GUO Yu-ying. Kinematics analysis of detection device of cable-link wind turbine blades[J]. Chinese Journal of Engineering Design, 2018, 25(2): 188-193.
[10] YIN He-sheng, ZHANG Qiu-ju, NING Meng. Design of synchronous steering mechanism of driving wheel for omnidirectional mobile robot[J]. Chinese Journal of Engineering Design, 2018, 25(2): 230-236.
[11] SONG Wei-gang, JI Hong-bo. Research progress and design calculation method of pipe conveyor[J]. Chinese Journal of Engineering Design, 2018, 25(1): 1-11.
[12] CHEN Gui-liang, CAO Wei-tao, YANG Dong, ZHANG Shou-lin, LI He-li. Compliant operation research for slabstone-installing robot based on impedance control[J]. Chinese Journal of Engineering Design, 2017, 24(1): 100-107.
[13] XU Jian, MEI Jiang-ping, DUAN Xiao-bin, LUO Zhen-jun, CHEN Luo-gen. An algorithm for segment transition in continuous trajectory planning of industrial robot[J]. Chinese Journal of Engineering Design, 2016, 23(6): 537-543.
[14] WANG Wei-jun, YANG Gui-lin, ZHANG Chi, CHEN Qing-ying. Design and realization of powered caster wheel for omnidirectional mobile robot[J]. Chinese Journal of Engineering Design, 2016, 23(6): 633-638.
[15] ZHU Yan-jie, YI Ya-li, JING Chang-hai, DAI Yong-bo. Design and simulation of measuring wheel guidance mode for omnidirectional vehicle[J]. Chinese Journal of Engineering Design, 2016, 23(4): 333-337,377.