Please wait a minute...
Chinese Journal of Engineering Design  2019, Vol. 26 Issue (6): 714-721    DOI: 10.3785/j.issn.1006-754X.2019.00.001
Modeling, Simulation, Analysis, and Decision     
Analysis of time-varying characteristics of braking instability of drum brake
HUANG Ze-hao1,2, ZHANG Zhen-hua1, HUANG Xu1,3, LEI Wei4
1.Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China
2.Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China
3.Zhengzhou Nissan Auto Co., Ltd., Zhengzhou 450000, China
4.CSGC TRW Chassis Systems Co., Ltd., Chongqing 402760, China
Download: HTML     PDF(2993KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The brake works unsteadily and causes vibration and noise, because of the complex and changeable working environment, and the temperature change of drum brake has a great influence on the brake instability. It is of practical engineering significance to study the influence factors and time-varying characteristics of braking instability. Based on the four-degree-of-freedom contact model of drum brake, the model of brake drum and brake shoe assembly of drum brake and the contact model of friction brake were established respectively in Hypermesh and ABAQUS and tested and verified. The influence of brake drum temperature on brake stress was studied through the dynamic analysis of thermal-mechanical coupling. The effects of elastic modulus and thermal expansion coefficient on the time-varying characteristics of braking instability of drum brake were analyzed. The results showed that the braking instability was caused by friction coupling. During the braking process, the temperature and stress of the brake drum interacted with each other and rose rapidly first and then fell slowly. The time-varying characteristics of braking instability of drum brake were mainly reflected in the number of unstable modes and the change of tendency of instability (TOI) value. The braking temperature change led to the change of elastic modulus, which caused a slight change in the number of unstable modes and the TOI value. The elastic modulus had little influence on the time-varying characteristics of braking instability of drum brake. The braking temperature change led to the change of the thermal expansion coefficient, which caused the number of unstable modes and TOI value to decrease at first and then slightly increase, and the thermal expansion coefficient had a great influence on the time-varying characteristics of braking instability of drum brake. The results of this study have some guiding significance for improving the braking sound quality of automobile.

Key wordsdrum brake      instability      friction coefficient      elastic modulus      thermal expansion coefficient      temperature     
Received: 05 May 2019      Published: 28 December 2019
CLC:  U 463.51  
Cite this article:

HUANG Ze-hao, ZHANG Zhen-hua, HUANG Xu, LEI Wei. Analysis of time-varying characteristics of braking instability of drum brake. Chinese Journal of Engineering Design, 2019, 26(6): 714-721.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2019.00.001     OR     https://www.zjujournals.com/gcsjxb/Y2019/V26/I6/714


鼓式制动器制动不稳定时变特性分析

由于工作环境复杂多变,制动器工作不稳定而导致振动和噪声,鼓式制动器制动时的温度变化对制动不稳定性影响较大,研究制动不稳定性影响因素及其制动不稳定时变特性具有实际工程意义。基于鼓式制动器四自由度接触模型,分别在Hypermesh和ABAQUS中建立鼓式制动器制动鼓和制动蹄总成模型与摩擦制动接触模型并进行试验验证;通过热机耦合动态分析,研究制动鼓温度对制动应力的影响;分析弹性模量和热膨胀系数对鼓式制动器制动不稳定时变特性的影响。分析表明:制动不稳定性是摩擦力耦合所致;制动过程中制动鼓温度与应力相互作用且均先快速上升后缓慢下降;鼓式制动器制动不稳定时变特性主要体现在不稳定模态个数及不稳定倾向系数(tendency of instability, TOI)值的变化,制动温度变化导致弹性模量变化,引起不稳定模态个数和TOI值略有变化,弹性模量对鼓式制动器制动不稳定时变特性影响较小;制动温度变化导致热膨胀系数变化,引起不稳定模态个数和TOI值先大幅降低后略有升高,热膨胀系数对鼓式制动器制动不稳定时变特性影响较大。研究结果对改善汽车制动声品质具有一定指导意义。

关键词: 鼓式制动器,  不稳定性,  摩擦系数,  弹性模量,  热膨胀系数,  温度 
[1] 金晓行,刘小君,王伟,等.摩擦制动器温度场的研究现状和展望[J].合肥工业大学学报(自然科学版),2007,30(7):801-804. doi:CNKI:SUN:HEFE.0.2007-07-002 JIN Xiao-xing, LIU Xiao-jun, WANG Wei, et al. Development of researches on the temperature field of frictional brakes[J]. Journal of Hefei University of Technology (Natural Science), 2007, 30(7): 801-804.
[2] BAKAR A R A, OUYANG Hua-jiang, KHAI L C, et al. Thermal analysis of a disc brake model considering a real brake pad surface and wear[J]. International Journal of Vehicle Structures and Systems, 2010, 2(1): 20-27. doi:10.4273/ijvss.2.1.04
[3] ADAMOWICZ A, GRZES P. Analysis of disc brake temperature distribution during single braking under non-axisymmetric load[J]. Applied Thermal Engineering, 2011, 31 (6/7): 1003-1012.doi:10.1016/j.applthermaleng.2010.12.016
[4] 孟德建,张立军,阮丞,等.摩擦引起的制动器热点问题综述[J].同济大学学报(自然科学版),2014,42(8):1203-1210. MENG De-jian, ZHANG Li-jun, RUAN Cheng, et al. Literature survey of friction induced hot spots in brakes[J]. Journal of Tongji University (Natural Science), 2014, 42(8): 1203-1210. doi:10.3969/j.issn.0253-374x.2014.08.009
[5] GHAZALY N M, MOHAMED E, IBRAHIM A. A review of automotive brake squeal mechanisms[J]. Journal of Mechanical Design and Vibration, 2014, 1(1): 5-9.
[6] JIAN Qi-fei, SHUI Yan. Numerical and experimental analysis of transient temperature field of ventilated disc brake under the condition of hard braking[J]. International Journal of Thermal Sciences, 2017, 122(10): 115-123. doi:10.1016/j.ijthermalsci.2017.08.013
[7] 管迪华,宿新东.制动振动噪声研究的回顾、发展与评述[J].工程力学,2004,21(4):150-155. doi:10.3969/j.issn.1000-4750.2004.04.027 GUAN Di-hua, SU Xin-dong. An overview on brake vibrations and noise[J]. Engineering Mechanics, 2004, 21(4): 150-155.
[8] MASSI F, BAILLET L, GIANNINI O, et al. Brake squeal: linear and nonlinear numerical approaches[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2374-2393. doi:10.1016/j.ymssp.2006.12.008
[9] 陈光雄,刘启跃,金学松,等.时滞摩擦尖叫噪声模型的稳定性研究[J].振动与冲击,2008,27(4):58-62. doi:10.3969/j.issn.1000-3835.2008.04.016 CHEN Guang-xiong, LIU Qi-yue, JIN Xue-song, et al. Stability of a squealing noise model with time delay[J]. Journal of Vibration and Shock, 2008, 27(4): 58-62.
[10] 吕红明,张立军,余卓平. 接触表面不平度对摩擦尖叫噪声的影响[J].摩擦学学报,2011,31(5):473-479. doi:10.16078/j.tribology.2011.05.010 Lü Hong-ming, ZHANG Li-jun, YU Zhuo-ping. Effects of surface roughness on the friction-induced squeal noise[J]. Tribology, 2011, 31(5): 473-479.doi:10.1080/0144929X.2011.553739
[11] 张立军,刁坤,孟德建,等.摩擦引起的振动和噪声的研究现状与展望[J].同济大学学报(自然科学版),2013,41(5):765-772. doi:CNKI:SUN:TJDZ.0.2013-05-022 ZHANG Li-jun, DIAO Kun, MENG De-Jian, et al. Friction-induced vibration and noise research: the status quo and its prospect[J]. Journal of Tongji University (Natural Science), 2013, 41(5): 765-772.
[12] HASSAN M Z, BROOKS P C, BARTON D C. A predictive tool to evaluate disk brake squeal using a fully coupled thermo-mechanical finite element model[J]. International Journal of Vehicle Design, 2009, 51(1/2): 124-142. doi:10.1504/IJVD.2009.027118
[13] 汪德成,陈凌珊,黄欣,等.盘式制动器制动尖叫热机耦合特性仿真分析[J].噪声与振动控制,2014,34(6):75-78. doi:CNKI:SUN:ZSZK.0.2014-06-020 WANG De-cheng, CHEN Ling-shan, HUANG Xin, et al. Simulation and experimental analysis of braking squeal of disc brake system considering thermo-mechanical coupling effect[J]. Noise and Vibration Control, 2014, 34(6):75-78.
[14] GUAN Di-hua,JIANG Dong-ying.A study on disc brake squeal using finite element methods[C]//International Congress and Exposition. Detroit: SAE, 1998: 980597. doi: 10.4271/980597
[15] SAE Working Group. SAE J2521—2006: disc and drum brake dynamometer squeal noise matrix[S].USA: Warrendale, PA, SAE International, 2006.
[16] 庞明,张立军,孟德建,等. 鼓式制动器摩擦尖叫的复模态模型与影响因素研究[J].振动与冲击, 2014,33(8):35-41. doi:10.13465/j.cnki.jvs.2014.08.007 PANG Ming, ZHANG Li-jun, MENG De-jian. Complex modal analysis model for frictional squeal of an automotive drum brake and its affect factors[J]. Journal of Vibration and Shock, 2014, 33(8):35-41.
[17] 黄泽好,刘通,雷伟,等. 盘式制动器噪声、振动与声振粗糙度特性的复模态评价[J]. 兵工学报,2016,37(7):1275-1281. doi:10.3969/j.issn.1000-1093.2016.07.016 HUANG Ze-hao, LIU Tong, LEI Wei, et al. Complex modal evaluation of NVH characteristic of disc brake[J]. Acta Armamentarii, 2016, 37(7): 1275-1281.
[18] 赵东屹.汽车刹车盘散热性及摩擦磨损性能研究[D].大连:大连理工大学机械工程学院,2013: 24-25. doi:10.14018/j.cnki.cn13-1085/n.2014.06.057 ZHAO Dong-yi. Research on dissipation and friction-wear performance of automobile brake disc[D]. Dalian: Dalian University of Technology, School of Mechanical Engineering, 2013: 24-25.
[19] 刘宇澄.乘用车盘式制动器制动噪声影响因素分析及参数优化方法研究[D].杭州:浙江大学机械工程学院,2017: 48-68. LIU Yu-cheng. Influencing factors analysis of brake noise and research on parameter optimization method of passenger car disk brake[D]. Hangzhou: Zhejiang University, School of Mechanical Engineering, 2017: 48-68.
[1] Xiao-hua ZHU,Cong LI,Wei-ji LIU,Bin TAN,Wen XU. Study on bottom hole thermal-fluid-solid coupling of PDC bit in strong abrasive formation[J]. Chinese Journal of Engineering Design, 2022, 29(4): 446-455.
[2] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[3] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[4] ZHONG Liang-chun, KUANG Yu-chun, SHU Feng, ZHANG Cong. Design method of screw motor interference considering the influence of pressure and temperature[J]. Chinese Journal of Engineering Design, 2021, 28(3): 321-328.
[5] WANG Chao, SUN Wen-xu, MA Xiao-jing, CHEN Ji-yang, LUAN Yi-zhong, MA Si-le. Temperature control system of HVPE growth equipment based on fuzzy control[J]. Chinese Journal of Engineering Design, 2020, 27(6): 765-770.
[6] MA Ya-chao, ZHANG Peng, HUANG Zhi-qiang, NIU Shi-wei, XIE Dou, DENG Rong. Prediction of dynamic wear trend of PDC bit under the influence of varying temperature and load[J]. Chinese Journal of Engineering Design, 2020, 27(5): 625-635.
[7] WU Cong-kui, HE Bai-yan, YUAN Peng-fei. Thermal-structural analysis of hoop deployable antenna with metal hinges[J]. Chinese Journal of Engineering Design, 2020, 27(3): 349-356.
[8] HUANG Zhi-qiang, ZHANG Wen-yuan, MA Ya-chao, LI Gang, WU Xiao-hong. Research on influence of clearance between sliding shoe and guide plate and oil supply flow on lubrication and cooling status of 6000HP fracturing pump[J]. Chinese Journal of Engineering Design, 2020, 27(1): 59-66.
[9] KONG De-shuai, HU Gao-feng, ZHANG Guan-wei, ZHANG Da-wei. Design and performance analysis of variable preload spindle based on piezoelectric actuator[J]. Chinese Journal of Engineering Design, 2019, 26(6): 743-752.
[10] JIANG Hong-wan. Contrastive study on cutting energy of cemented carbide turning tools before and after improvement[J]. Chinese Journal of Engineering Design, 2019, 26(6): 700-705.
[11] TAN Hui, ZONG Kuan, XIONG Chang-wu, WENG Xia, DU Ping-an. Design and heat transfer performance analysis of leaf vein-shaped microchannel heat sink[J]. Chinese Journal of Engineering Design, 2019, 26(4): 477-483.
[12] LI Song-mei, QIU Shi-kai. Average transmission efficiency analysis of tripod universal joint[J]. Chinese Journal of Engineering Design, 2019, 26(4): 379-384.
[13] TANG Dong-lin, LI Mao-yang, DING Chao, WEI Zi-bing, HU Lin, YUAN Bo. Research on steering stability of wheeled wall-climbing robot[J]. Chinese Journal of Engineering Design, 2019, 26(2): 153-161.
[14] YANG Ying, YE Xue-long, YE Chao. Analysis and optimization of thermal performance of brake disc of ultra deep mine hoist[J]. Chinese Journal of Engineering Design, 2019, 26(1): 47-55.
[15] LIU Xiao-qing, LIU Jun-wei, WANG Lu-si, LAI Xiao-ming, ZHAN Qing-xin. Study on thermal characteristics of drilling tools during lunar soil drilling coring process[J]. Chinese Journal of Engineering Design, 2019, 26(1): 73-78.