Please wait a minute...
Chinese Journal of Engineering Design  2019, Vol. 26 Issue (6): 700-705    DOI: 10.3785/j.issn.1006-754X.2019.00.012
Optimization Design     
Contrastive study on cutting energy of cemented carbide turning tools before and after improvement
JIANG Hong-wan
College of Mechanical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
Download: HTML     PDF(2017KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In the metal cutting process, the generation and dissipation of energy always exists, which directly affects the deformation of processed material and processing quality. The cemented carbide turning tool was researched through the combination of theoretical calculation, cutting test and simulation. The generation, transmission and dissipation of cutting energy of the improved cemented carbide micro-groove turning tool and the original turning tool in the process of cutting high-strength alloy steel were mainly studied, and the cooling mechanism of the micro-groove turning tool was revealed from the view of energy. It was found that the energy consumption of the cemented carbide micro-groove turning tool was lower than that of the original turning tool. The reduction of the unit total input energy, unit friction energy and unit shear energy was 5.1%, 10.4% and 3.4%, respectively. From the view of energy dissipation, the average temperature of the cutting area of the cemented carbide micro-groove turning tool was lower than that of the original turning tool, and the theoretical and experimental results were in good agreement with the simulation results. The conclusion provides theoretical support for the later research of the cemented carbide micro-groove turning tool, and also provides an effective reference for the comparative study of cutting energy in other similar metal cutting processes.

Key wordscemented carbide      micro-groove turning tool      cutting energy      cutting temperature     
Received: 15 July 2019      Published: 28 December 2019
CLC:  TG 712  
Cite this article:

JIANG Hong-wan. Contrastive study on cutting energy of cemented carbide turning tools before and after improvement. Chinese Journal of Engineering Design, 2019, 26(6): 700-705.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2019.00.012     OR     https://www.zjujournals.com/gcsjxb/Y2019/V26/I6/700


硬质合金车刀改进前后切削能对比研究

在金属切削过程中,能量的产生与耗散时刻存在,这会直接影响加工材料的形变与加工质量。以硬质合金车刀为研究对象,借助结合理论计算、切削实验与仿真分析的研究手段,对改进的硬质合金微槽车刀和原车刀在切削高强合金钢过程中切削能的产生、传递与耗散展开研究,从能量角度揭示硬质合金微槽车刀的降温机理。研究发现,硬质合金微槽车刀较原车刀降低了切削过程的能耗,其单位总输入能、单位摩擦能、单位剪切能的降幅分别为5.1%,10.4%和3.4%;从能量耗散角度分析发现,硬质合金微槽车刀切削区平均温度低于原车刀,且理论计算和实验分析结果与仿真结果一致。研究结果为硬质合金微槽车刀的深入研究提供了理论支持,为其它类似金属加工过程中切削能量的对比研究提供了有效的参考。

关键词: 硬质合金,  微槽车刀,  切削能,  切削温度 
[1] MA G X, CHANG S I, LEI S. Assessment of cutting energy consumption and energy efficiency in machining of 4140 steel[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(10): 1701-1708. doi: 10.1007/s00170-014-6101-3
[2] 刘国伟,夏茜,王千叶,等. 切削式吸能的惯性效应[J].交通运输工程学报,2015,15(3):62-70. LIU G W, XIA X, WANG Q Y, et al. Inertia effects of cutting energy absorption[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 62-70.
[3] KYILDIZ H K A, LIVATYALI H. Effect of cutting energy on fatigue behavior of threaded specimens[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(3): 547-557. doi: 10.1007/s00170-013-5278-1
[4] WU X, LI L, ZHAO M, et al. Experimental investigation of specific cutting energy and surface quality based on negative rake angle in micro turning[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(10): 9-12. doi: 10.1007/s00170-015-7548-6
[5] JIANG Hong-wan, HE Li, YANG Xin-yu, et al. Prediction and experimental research on cutting energy of a new cemented carbide coating micro groove turning tool[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(5): 2335-2343. doi: 10.1007/s00170-016-9270-4
[6] 蒋宏婉.切削40CrMnMo的硬质合金刀具前刀面微槽创新设计研究[D].贵阳:贵州大学机械工程学院, 2017:98-100. doi:CNKI:CDMD:1.1017.876884 JIANG Hong-wan. Research on innovative design of the micro groove on the rake face of cemented carbide tool cutting 40CrMnMo[D]. Guiyang: Guizhou University, School of Mechanical Engineering, 2017: 98-100.
[7] JIANG Hong-wan, HE Li, ZOU Zong-fei, et al. Experimental research on strain hardening effect of 40CrMnMo in turning process based on Oxley-Welsh theory[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(10): 3053-3061. doi: 10.1007/s00170-017-0655-9
[8] 蒋宏婉,袁森,陈海虹,等.基于有限元法的硬质合金微槽车刀刀-屑接触摩擦模型研究[J].工具技术,2018,52(10):67-71. doi: 10.3969/j.issn.1000-7008.2018.10.028 JIANG Hong-wan, YUAN Sen, CHEN Hai-hong, et al. Study on friction model of tool-chip interface of a cemented carbide micro groove turning tool based on finite element method[J]. Tool Engineering, 2018, 52(10): 67-71.
[9] 蒋宏婉,袁森,任仲伟,等.硬质合金微槽车刀切削过程切削力和切削温度对比研究[J].工具技术,2018,52(9):43-46. doi: 10.3969/j.issn.1000-7008.2018.09.021 JIANG Hong-wan, YUAN Sen, REN Zhong-wei, et al. Contrastive study on cutting force and cutting temperature in cutting process of a cemented carbide micro groove turning tool[J]. Tool Engineering, 2018, 52(9): 43-46.
[10] JIANG Hong-wan, HE Lin, REN Zhong-wei, et al. Wear mechanism of the loose layer on the rake face of a new cemented carbide micro groove turning tool[J]. International Journal of Advanced Manufacturing Technology, 2018, 98(6): 1069-1080. doi: 10.1007/s00170-018-2313-2
[11] 邹中妃,何林,陈跃威,等.新型微槽刀具的切削能及刀具耐用度研究[J].工具技术,2018,52(11):17-22. doi:10.3969/j.issn.1000-7008.2018.11.017 ZOU Zhong-fei, HE Lin, CHEN Yue-wei, et al. Study on cutting energy and tool durability of new micro-groove tool[J]. Tool Engineering, 2018, 52(11): 17-22.
[12] ZOU Zhong-fei, HE Lin, JIANG Hong-wan, et al. Development and analysis of a low-wear micro-groove tool for turning Inconel 718[J]. Wear, 2019, 420-421: 163-175. doi: 10.1016/j.wear.2018.10.002
[13] WANG Li-hui, MENG Yue, WEI Ji, et al. Cutting energy consumption modelling for prismatic machining features[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(7):1657-1667. doi: 10.1007/s00170-019-03667-5
[14] GHORBANI Mohammad, MOVAHHEDY Mohammad R. Extraction of surface curvatures from tool path data and prediction of cutting forces in the finish milling of sculptured surfaces[J]. Journal of Manufacturing Processes, 2019, 45: 273-289.
[15] WANG S Q, LI J G, HE C L, et al. An analytical model of residual stress in orthogonal cutting based on the radial return method[J]. Journal of Materials Processing Technology, 2019, 273: 116234. doi:10.1016/j.jmatprotec.2019.05.015
[16] 王永鑫,张昌明.TC18钛合金车削加工的切削力和表面粗糙度[J].机械工程材料,2019,43(7):69-73. doi:10.11973/jxgccl201907015 WANG Yong-xin, ZHANG Chang-ming. Cutting force and surface roughness of turning on TC18 titanium alloy[J]. Materials for Mechanical Engineering, 2019, 43(7): 69-73.
[17] HAO Zhao-peng, JI Fang-fang, FAN Yi-hang, et al. Failure feature and characterization of material of shear band in cutting Inconel718[J]. Journal of Manufacturing Processes, 2019, 45: 154-165. doi:10.1016/j.jmapro.2019.06.016
[18] CEPERO-MEJIAS F, PHADNIS V A, CURIEL-SOSA J L. Machining induced damage in orthogonal cutting of UD composites: FEA based assessment of Hashin and Puck criteria[J]. Procedia CIRP, 2019, 82:332-337. doi: 10.1016/j.procir.2019.04.241
[19] 陈涛,宋立星,李素燕,等.渐变强化刃刀具硬切削过程切屑流动和刀具磨损研究[J].机械工程学报,2019,55(19):195-200. doi: 10.3901/JME.2019.19.195 CHEN Tao, SONG Li-xing, LI Su-yan, et al. Study on chip flow and tool wear in hard cutting process of gradually strengthened tools[J]. Journal of Mechanical Engineering, 2019, 55(19):195-200.
[20] SHAH Suril R, LIU Guo-liang, ?ZEL Tu?rul. Finite element simulations of chip serration in titanium alloy cutting by considering material failure[J]. Procedia CIRP, 2019, 82: 320-325. doi: 10.1016/j.procir.2019.04.153
[1] ZHOU You, LI Guo-Shun, TANG Jin-Yuan. Simulation and analysis for pick cutting rock by LS_DYNA[J]. Chinese Journal of Engineering Design, 2011, 18(2): 103-108.