Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (6): 647-654    DOI: 10.3785/j.issn.1006-754X.2018.06.004
    
Reliability analysis for pressing force of prestressed concrete cylinder pipe port grinding robot
CUI Guo-hua1,2, CUI Kang-kang1, WU Hai-miao1, ZHANG Yan-wei2, LIU Jian1
1. College of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China;
2. Intelligent Robot Research and Development Center, Shanghai University of Engineering Science, Shanghai 201620, China
Download: HTML     PDF(2523KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Prestressed concrete cylinder pipe (PCCP) is widely used in water conservancy projects, industrial water supply and so on. In view of the problems of inefficient and difficult to guarantee the quality of PCCP port grinding, a grinding robot for socket and spigot of PCCP is innovatively designed. First of all, according to the requirements of working in-service environment, the structure design and prototype production for the port grinding robot were carried out, and the skidding failure of the robot was analyzed by field test. Secondly, according to the grinding process that the grinding robot overcoming the frictional force to make a circumferential rotation around the pipe port, the pressing force model and reliability model were established on the basis of mechanical analysis. The dynamic reliability of the whole grinding process was analyzed using the stochastic perturbation method. The key part of the grinding robot with the lowest reliability was obtained. Finally, the working parameters affecting the reliability sensitivity of the port grinding robot were analyzed, and it was concluded that the parameter making the port grinding robot towards reliability fastest was from the radius of the driving wheel. The research results lay the foundation for the development of large-scale PCCP automated manufacturing equipment with independent intellectual property rights and the subsequent reliability optimization design.



Key wordsprestressed concrete cylinder pipe      port grinding robot      pressing force model      reliability      sensitivity     
Received: 18 May 2018      Published: 28 December 2018
CLC:  TP202.1  
Cite this article:

CUI Guo-hua, CUI Kang-kang, WU Hai-miao, ZHANG Yan-wei, LIU Jian. Reliability analysis for pressing force of prestressed concrete cylinder pipe port grinding robot. Chinese Journal of Engineering Design, 2018, 25(6): 647-654.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.06.004     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I6/647


预应力钢筒混凝土管端口打磨机器人的压紧力可靠性分析

预应力钢筒混凝土管(prestressed concrete cylinder pipe,PCCP)在水利工程、工业供水等领域得到广泛应用。针对现有PCCP端口打磨方法效率低、打磨质量难以保证等问题,创新设计了一种PCCP承、插口打磨机器人。首先,根据工作服役环境要求,对端口打磨机器人进行了结构设计与样机制作,并通过现场试验分析该机器人的打滑失效问题;其次,根据打磨机器人克服摩擦力环绕承、插口作周向转动的打磨过程,在进行力学分析基础上建立其压紧力模型及可靠性模型,并采用随机摄动方法分析了整个打磨过程的动态可靠度,得到该打磨机器人可靠性最低的关键部位;最后,对影响端口打磨机器人可靠性的参数进行了灵敏度分析,得出使端口打磨机器人最快趋向可靠的参数为从动轮半径。研究结果为研发具有自主知识产权的大型PCCP自动化制造装备及进行下一步可靠性优化设计奠定了基础。


关键词: 预应力钢筒混凝土管,  端口打磨机器人,  压紧力模型,  可靠性,  灵敏度 
[[1]]   胡少伟,沈捷,王东黎,等.超大口径预存裂缝的预应力钢筒混凝土管结构分析与试验研究[J].水利学报,2010,41(7):876-882. HU Shao-wei, SHEN Jie, WANG Dong-li, et al. Experiment and numerical analysis on super caliber prestressed concrete cylinder pipes with cracks[J]. Journal of Hydraulic Engineering, 2010, 41(7):876-882.
[[2]]   彭寿海.超大口径预应力钢筒混凝土管(PCCP)结构分析[D].北京:清华大学水利水电工程系,2009:1-12. PENG Shou-hai. Structural analysis of PCCP with super-large diameter prestressed cylinder concrete pipe[D]. Beijing:Tsinghua University, Department of Water Resources and Hydropower Engineering, 2009:1-12.
[[3]]   窦铁生,程冰清,胡赫,等.预应力钢筒混凝土管结构变形规律的原型试验研究Ⅰ:内压[J].水利学报,2017,48(12):1438-1446. DOU Tie-sheng, CHENG Bing-qing, HU He, et al. The prototype test study of prestressed concrete cylinder pipe structure deformation law Ⅰ:the internal pressure[J]. Journal of Hydraulic Engineering, 2017, 48(12):1438-1446.
[[4]]   乔俊宏,马祥,徐建忠,等.一种PCCP管打磨装置:CN104227541A[P].2014-12-24. QIAO Jun-hong, MA Xiang, XU Jian-zhong, et al. A PCCP pipe grinding device:CN104227541A[P]. 2014-12-24.
[[5]]   严家琛.大口径金属螺旋管内壁焊缝自动跟踪打磨机器人的研制[D].上海:东华大学机电工程系,2017:4-58. YAN Jia-Chen. Development of automatic tracking and grinding robot for inner wall weld of large caliber metal spiral pipe[D]. Shanghai:Donghua University, Department of Mechanical Engineering, 2017:4-58.
[[6]]   PEI Yu. Research and application of piping inside grinding robots in nuclear power plant[J]. Energy Procedia, 2017, 127:54-59.
[[7]]   唐德威,李庆凯,姜生元,等.具有差动运动功能的管道机器人设计与分析[J].机械工程学报,2011,47(13):1-8. TANG De-wei, LI Qing-kai, JIANG Sheng-yuan, et al. Design and analysis of a pipeline robot with the function of differential movement[J]. Journal of Mechanical Engineering, 2011, 47(13):1-8.
[[8]]   NAYAK Ankit, PRADHAN S K. Design of a new in-pipe inspection robot[J]. Procedia Engineering, 2014, 97:2081-2091.
[[9]]   MATEOS Luis A, VINCZE Markus. DeWaLoP in-pipe robot embedded system[J]. IFAC Proceedings Volumes, 2012, 45(22):842-847.
[[10]]   ZHU C. In-pipe robot for inspection and sampling tasks[J]. Industrial Robot-An International Journal, 2007, 34(1):39-45.
[[11]]   ZINM R A M, SAHARI K S M, SAAD J M, et al. Development of a low cost small sized in-pipe robot[J]. Procedia Engineering, 2012, 41:1469-1475.
[[12]]   孙传智,李爱群,缪长青,等.大跨V形刚构桥标高控制动态可靠性及灵敏度研究[J].应用基础与工程科学学报,2012,20(5):886-894. SUN Chuan-zhi, LI Ai-qun, MIU Chang-qing, et al. Research on dynamic reliability and reliability sensitivity of elevation control for long span V-shaped rigid frame bridge[J]. Journal of Basic Science and Engineering, 2012, 20(5):886-894.
[[13]]   王新刚,张义民,王宝艳.机械零部件的动态可靠性灵敏度分析[J].机械工程学报,2010,46(10):188-193. WANG Xin-gang, ZHANG Yi-min, WANG Bao-yan. Dynamic reliability sensitivity analysis of mechanical parts[J]. Journal of Mechanical Engineering, 2010, 46(10):188-193.
[[14]]   WANG Wei, ZHANG Yi-min, LI Chang-you. Dynamic reliability analysis of linear guides in positioning precision[J]. Mechanism and Machine Theory, 2017, 116:451-464.
[[15]]   张义民,贺向东,刘巧伶.螺旋管簧的可靠性鲁棒设计[J].应用基础与工程科学学报,2003,11(4):419-424. ZHANG Yi-min, HE Xiang-dong, LIU Qiao-ling. Reliability-based robust design for coil tube-spring[J]. Journal of Basic Science and Engineering, 2003, 11(4):419-424.
[[16]]   杨周.非正态分布参数的机械构件的可靠性灵敏度和可靠性稳健设计[D].沈阳:东北大学机械工程系,2010:11-41. YANG Zhou. Reliability-based sensitivity and reliability-based robust design of mechanical components with non-normal random variables[D]. Shenyang:Northeastern University, Department of Mechanical Engineering, 2010:11-41.
[[17]]   张义民,刘仁云,贺向东.非正态分布参数的机械联接件的可靠性灵敏度设计[J].机械设计与研究,2005,21(1):4-7. ZHANG Yi-min, LIU Ren-yun, HE Xiang-dong. Reliability sensitivity of mechanical joints with non-normal distribution parameters[J]. Machine Design and Research, 2005, 21(1):4-7.
[[18]]   WANG Pan, LU Zhen-zhou, HU Ji-xiang, et al. Sensitivity analysis of the variance contributions with respect to the distribution parameters by the kernel function[J]. Computers & Mathematics with Applications, 2014, 67(10):1756-1771.
[1] Yuchun KUANG,Hui ZHONG,Liangchun ZHONG. Design and research of screw motor with quasi circular-arc contour-pattern[J]. Chinese Journal of Engineering Design, 2023, 30(5): 640-649.
[2] Jianghao LI,Wensheng XIAO,Wentai YU,Hongyan WANG,Shunqing LIU,Youfu SUN. Reliability analysis and allocation research of ultra-deep water pile hammer system[J]. Chinese Journal of Engineering Design, 2023, 30(4): 485-494.
[3] Hongjie GUO,Shuya LIANG,Wenhua CHEN,Liqiang ZHONG,Zhewen CHEN,Jiahui YAN. Research on influence of wire spring inclination angle on storage life of wire spring hole electrical connector[J]. Chinese Journal of Engineering Design, 2023, 30(3): 390-398.
[4] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chinese Journal of Engineering Design, 2022, 29(6): 720-730.
[5] Jiang LIU,Zheng-ming XIAO,Long-long ZHANG,Wei-biao LIU. Transmission accuracy reliability analysis and parameter optimization of RV reducer considering cycloid gear wear[J]. Chinese Journal of Engineering Design, 2022, 29(6): 739-747.
[6] Chen WANG,Bo GAO,Xu YANG. Lightweight design of Stewart type six-axis force sensor[J]. Chinese Journal of Engineering Design, 2022, 29(4): 419-429.
[7] Ze-jun WEN,Xiang-heng MENG,Zhao XIAO,Fan ZHANG. Sensitivity analysis of airfoil aerodynamic characteristics based on NT-net method and Morris method[J]. Chinese Journal of Engineering Design, 2022, 29(4): 438-445.
[8] Jing-liang WANG,Tian-cheng ZHU,Long-biao ZHU,Fei-yun XU. Research on variable density topology optimization method for continuum structure[J]. Chinese Journal of Engineering Design, 2022, 29(3): 279-285.
[9] TAO Xiao-dong, GUO An-fu, LI Hui, HAN Wei, LI Wan-cai, LI Tao. Performance analysis and optimization of disc ditcher based on sensitivity analysis[J]. Chinese Journal of Engineering Design, 2022, 29(1): 59-65.
[10] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chinese Journal of Engineering Design, 2021, 28(4): 415-425.
[11] LIU Ruo-chen, XU Cheng, WANG Kui-yang, WANG Yi-min, SUN Jian-zhong. Research on performance parameters of new wear-site electrostatic sensor[J]. Chinese Journal of Engineering Design, 2020, 27(5): 645-653.
[12] LI Cheng-bing, YE Chao, MAO Xi-hao. Application of LSSVM optimized by improved artificial bee colony algorithm in quantitative analysis of mixture gas[J]. Chinese Journal of Engineering Design, 2020, 27(1): 94-102.
[13] TAO Xiao-hui, LI Guo-long, XU Kai, LI Chuan-zhen. Sensitivity analysis of geometric error of worm wheel gear grinding machine[J]. Chinese Journal of Engineering Design, 2020, 27(1): 111-120.
[14] WANG Ai-lun, LIU Le, LIU Qing-ya. Research on strength reliability of pull rod combined rotor based on Kriging surrogate model[J]. Chinese Journal of Engineering Design, 2019, 26(4): 433-440.
[15] TANG Lin, XU Zhi-pei, HE Tian-long, AO Wei-chuan. Sensitivity analysis of rotation frame stability based on BP neural network[J]. Chinese Journal of Engineering Design, 2018, 25(5): 576-582.