Please wait a minute...
Chinese Journal of Engineering Design  2012, Vol. 19 Issue (5): 340-344    DOI:
    
The application of an improved particle swarm algorithm based on the information entropy in truss structure optimization design
 ZHOU  Shu-Jing, GAO  Yan-An
School of Civil Engineering, Hebei University of Engineering, Handan 056038, China
Download: HTML     PDF(499KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The purpose is to improve the search performance of the particle swarm optimization algorithm applied to solving the optimization design problem of the section size of the truss structure under the condition of stress and displacement constraints.The basic theory about the information entropy and particle swarm optimization algorithm were introduced, the feasibility about combining them for being understood was analyzed, the parameters of the particle swarm optimization algorithm was reasonably set and the information entropy was introduced to playing the twofold roles of the fitness function and terminated standards. In order to test the search performance of the improved particle swarm optimization algorithm using above methods, it and other optimization algorithms are compared with applying to solve two classic truss structure optimization solutions. The results experiment data comparison shows that the particle swarm optimization improved by the information entropy can search the smaller stress variance than references’, which reduces stress range of the truss structure and make it safer. The conclusion is that the improved particle swarm optimization algorithm by the information entropy has the better search performance in solving optimization problems comparing with the other similar algorithms.

Key wordsinformation entropy      particle swarm      optimization      truss structure     
Published: 28 October 2012
Cite this article:

ZHOU Shu-Jing, GAO Yan-An. The application of an improved particle swarm algorithm based on the information entropy in truss structure optimization design. Chinese Journal of Engineering Design, 2012, 19(5): 340-344.

URL:

https://www.zjujournals.com/gcsjxb/     OR     https://www.zjujournals.com/gcsjxb/Y2012/V19/I5/340


基于信息熵改进的粒子群算法在桁架结构

提出了信息熵改进的粒子群优化算法用于解决有应力约束、位移约束的桁架结构杆件截面尺寸优化设计问题.首先介绍了信息熵基本理论和基本粒子群优化算法理论,然后对粒子群优化算法作了合理的参数设置,并将信息熵引入粒子群优化算法的适应函数和停机判别准则中.最后对2个经典的优化问题进行求解并与其他算法进行了比较.数据结果表明信息熵改进后的粒子群优化算法在桁架结构优化设计中优于其他同类算法.

关键词: 信息熵,  粒子群,  优化,  桁架结构 
[1] Zhi-qiang NING,Li-xin WEI,Long QUAN,Mei-qing ZHAO,You-shan GAO. Anti-interference control and parallel tuning method for variable displacement asymmetric axial piston pump[J]. Chinese Journal of Engineering Design, 2022, 29(4): 401-409.
[2] Jia-ning ZHANG,Ming-lu ZHANG,Man-hong LI,Tan ZHANG. Structural design and stiffness optimization of mechanical arm with super large telescopic ratio for ash silo cleaning[J]. Chinese Journal of Engineering Design, 2022, 29(4): 430-437.
[3] Jing-liang WANG,Tian-cheng ZHU,Long-biao ZHU,Fei-yun XU. Research on variable density topology optimization method for continuum structure[J]. Chinese Journal of Engineering Design, 2022, 29(3): 279-285.
[4] Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chinese Journal of Engineering Design, 2022, 29(3): 318-326.
[5] Chun-yan ZHANG,Bing DING,Zhi-qiang HE,Jie YANG. Kinematics analysis and optimization of rotary multi-legged bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(3): 327-338.
[6] Hong-jiang LIU,Teng HU,Yong HE,Feng DONG,Wei LUO. Spindle thermal error modeling of NC machine tool based onCSO-SVM[J]. Chinese Journal of Engineering Design, 2022, 29(3): 339-346.
[7] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[8] Chuan-long XIN,Rong ZHENG,Fu-lin REN,Hong-guang LIANG. Suspension balance analysis and counterweight optimization design of AUV docking device[J]. Chinese Journal of Engineering Design, 2022, 29(2): 176-186.
[9] XIAO Zhen, HE Yan, LI Yu-feng, WU Peng-cheng, LIU De-gao, DU Jiang. Application of improved MDSMOTE and PSO-SVM in classification prediction of automobile combination instrument[J]. Chinese Journal of Engineering Design, 2022, 29(1): 20-27.
[10] LIANG Dong, LIANG Zheng-yu, CHANG Bo-yan, QI Yang, XU Zhen-yu. Optimal design of assisting-riveting parallel robot for lifting arm of dobby loom[J]. Chinese Journal of Engineering Design, 2022, 29(1): 28-40.
[11] ZHONG Dao-fang, TIAN Ying, ZHANG Ming-lu. Design and optimization of permanent magnet adsorption device for wheel-legged wall-climbing robot[J]. Chinese Journal of Engineering Design, 2022, 29(1): 41-50.
[12] YANG Shi-xiang, LI Wen-qiang. Innovation design of sealing structure of incineration ash treatment equipment[J]. Chinese Journal of Engineering Design, 2021, 28(6): 679-686.
[13] NI Wei-yu, ZHANG Heng, YAO Sheng-wei. Lightweight design of automobile seat frame based on multiple working conditions[J]. Chinese Journal of Engineering Design, 2021, 28(6): 729-736.
[14] ZHAO Bo, ZHAO Hai-ming, LIU Chen, HU Gang. Parametric design and optimization of suspended mining head for deep-sea cobalt crust[J]. Chinese Journal of Engineering Design, 2021, 28(5): 559-568.
[15] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chinese Journal of Engineering Design, 2021, 28(4): 415-425.