Please wait a minute...
Chinese Journal of Engineering Design  2011, Vol. 18 Issue (1): 38-42    DOI:
english     
Finite element analysis of contact between ZA worm and worm gearbased on precise tooth surface model
 LI  Li-Xin, JIANG  Yu-Gang, CAO  Yi-Bo
Mechanical Design Institute, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(4485KB)
Export: BibTeX | EndNote (RIS)      

Abstract  To make research on contact stress between worm and worm gear under different circumstances, and the relationship between the torsion angle of the worm and the driving torque, solid models with precise tooth surface of a ZA worm and worm gear were established based on tooth surface equations. Using these models, finite element analysis of contact was performed with ANSYS at different meshing locations under the same load and at the same meshing location under different loads, and the contact stress distribution on different meshing teeth and the load distribution among them were studied in a meshing cycle. The analysis results show that the contact stress calculated by the theoretical formula is quite smaller than the actual maximum, and that a power function is discovered between the driving torque and the torsion angle of the worm caused by elastic deformation of contact teeth, which can be used in precise angle control of the worm gear.

Key wordsZA worm      finite element analysis      contact stress      torque      torsion angle     
Published: 28 February 2011
CLC:  TH 132.4  
Cite this article:

LI Li-Xin, JIANG Yu-Gang, CAO Yi-Bo. Finite element analysis of contact between ZA worm and worm gearbased on precise tooth surface model. Chinese Journal of Engineering Design, 2011, 18(1): 38-42.

URL:

https://www.zjujournals.com/gcsjxb/     OR     https://www.zjujournals.com/gcsjxb/Y2011/V18/I1/38


基于精确齿面建模的ZA蜗杆蜗轮有限元接触分析

为了研究不同情况下蜗杆蜗轮间的接触应力和蜗杆扭转角与驱动力矩之间的关系,根据齿面方程建立具有精确齿面的ZA蜗杆蜗轮实体模型,利用ANSYS对此模型在同一载荷不同啮合位置和同一啮合位置不同载荷条件下进行有限元接触分析,研究在一个轮齿啮合周期内,各啮合齿对的接触应力分布和载荷在不同齿对上的分配情况.分析结果表明:理论接触应力计算公式给出的结果远小于实际的最大接触应力,同时得到由接触齿对弹性变形引起的蜗杆扭转角与驱动力矩之间的幂函数关系,可以用于蜗轮转角的精确控制.

关键词: ZA蜗杆,  有限元分析,  接触应力,  力矩,  扭转角 
[1]齿轮手册编委会. 齿轮手册(上册)[M]. 北京:机械工业出版社,1995:24-25.

Gear Manual Committee. Gear manual (Volume I) [M]. Beijing: China Machine Press, 1995:24-25.

[2]吴鸿业,华崇志.用有限元法研究蜗杆副轮齿承载状况[J].机械工程学报,1991,27(4):30-37.

WU Hong-ye, HUA Chong-zhi. A study of strength of worm gearing by using finite element method [J].Chinese Journal of Mechanical Engineering, 1991,27(4): 30-37.

[3]李云堂.圆弧齿圆柱蜗杆副蜗轮齿的有限元分析[J]. 机械设计, 2004, 21(4): 59-61.

LI Yuntang. Finite element analysis of worm gear in the circular-cylinder worm gear[J]. Journal of Machine Design, 2004, 21(4):59-61.

[4]孙月海,肖延萍,陈东祥.TI蜗杆传动参数化造型与齿面接触分析[J]. 机械传动,2005,29(5): 1-3.

SUN Yue-hai, XIAO Yan-ping, CHEN Dong-xiang. Parametric modeling and analysis of tooth contact of TI worm gear[J]. Journal of Mechanical Drive, 2005, 29(5):1-3.

[5]罗良清.渐开线蜗杆接触应力及传动效率的研究[D].武汉:武汉理工大学机电工程学院,2006.

LUO Liang-qing. Study on the contact stress and transmission efficiency of the involutes worm-drive[D]. Wuhan: Wuhan University of Technology, College of Mechanical & Electrical Engineering, 2006.

[6]胡福文. ZK蜗杆蜗轮的三维造型及有限元仿真分析[D]. 济南:山东大学机械工程学院,2008.

HU Fu-wen.3D modeling and finite element analysis of ZK worm and worm gear[D]. Jinan: Shandong University, School of Mechanical Engineering, 2008.

[7]江磊,王玉兰. 基于SolidWorks的阿基米德蜗杆蜗轮建模方法探讨[J].机械与电子,2007(3):67-70.

JIANG Lei, WANG Yu-lan. Study on the method of modeling archimedes worm and worm wheel based on Solid Works [J]. Machinery and Electronics,2007(3):67-70.

[8]柯常忠,张勇波. 阿基米德蜗杆蜗轮在Pro/E中的精确建模研究[J].机械,2005(S1):66-68.

KE Chang-zhong, ZHANG Yong-bo. Study on precise modeling of Archimedes worm and worm gear based on Pro/E [J]. Machinery, 2005(S1): 66-68.

[9]李俊源.基于SolidWorks的蜗轮蜗杆三维参数化设计[J].长春理工大学学报,2006, 29(1):98-100.

LI Jun-yuan. Parametric 3D-design for worm and worm gear based on SolidWorks [J]. Journal of Changchun University of Science and Technology, 2006, 29(1):98-100.

[10]蔡磊,罗良清,李志明.阿基米德蜗杆零件实体建模研究[J].湖北工业大学学报,2006,21(3):152-153.

CAI Lei, LUO Liang-qing, LI Zhi-ming. Study on solid modeling of straight slide axial worm parts[J]. Journal of Hubei University of Technology, 2006, 21(3):152-153.

[11]罗君扬,林述温,叶仲和,等.基于Pro/E的蜗轮传动三维造型研究[J].机电技术,2004(1): 20-23.

LUO Jun-yang, LIN Shu-wen, YE Zhong-he, et al. Study on the 3D-modeling of worm-gear based on Pro/E [J]. Mechanical and Electrical Technology, 2004(1):20-23.
[12]李立新,曹谊勃. 基于双三次B样条曲面的ZA蜗轮实体建模方法[J]. 工程设计学报. 2009, 16(4): 286-291.

LI Li-xin, CAO Yi-bo. Solid modeling method of ZA worm-gears based on bicubic B-spline surfaces [J]. Journal of Engineering Design, 2009, 16(4):286-291.

[13] 王树人,刘平娟. 圆柱蜗杆传动啮合原理[M].天津:天津科学技术出版社,1982.

WANG Shu-ren, LIU Ping-juan. Engagement theory of cylinder-worm drive [M]. Tianjin: Tianjin Scientific and Technical Publishers, 1982.
[1] Pei-can ZHUANG,Qi-yang LI,Xin-fu CHI,Yi-ze SUN. Research on modeling and control strategy of mechatronics system for radial ring braiding machine[J]. Chinese Journal of Engineering Design, 2022, 29(3): 347-357.
[2] Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chinese Journal of Engineering Design, 2022, 29(3): 318-326.
[3] Fei FENG,Yu-chen FU,Wei FAN,Ju MA. Design and performance analysis of triangular hybrid two-stage lever micro-displacement amplification mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(2): 161-167.
[4] WU Jia-yi, YUE Yang, LI Jun-ye, JIN Zhi-jiang, QIAN Jin-yuan. Circumferential design of throttling window of main feed water regulating valve and its influence on flow characteristics[J]. Chinese Journal of Engineering Design, 2022, 29(1): 74-81.
[5] CHEN Hong-yue, ZHANG Zhan-li, LU Zhang-quan. Design and performance study of cylindrical arm coil spring for linear compressor[J]. Chinese Journal of Engineering Design, 2021, 28(4): 504-510.
[6] WANG Cheng-jun, LI Shuai. Design and bending performance analysis of three-joint soft actuator[J]. Chinese Journal of Engineering Design, 2021, 28(2): 227-234.
[7] HUANG Wei, XU Jian, LU Xin-zheng, HU Ming-yi, LIAO Wen-jie. Research on dynamic vibration absorption for power equipment and building floor[J]. Chinese Journal of Engineering Design, 2021, 28(1): 25-32.
[8] ZHOU Chao, QIN Rui-jiang, RUI Xiao-ming. Analysis of mechanical properties of V-shaped insulator string under wind load[J]. Chinese Journal of Engineering Design, 2021, 28(1): 95-104.
[9] ZHOU Chao, WANG Yang, RUI Xiao-ming. Finite element analysis and experimental study on wind-induced swing of 500 kV transmission line jumper wire[J]. Chinese Journal of Engineering Design, 2020, 27(6): 713-719.
[10] HE Zhi-xian, CHEN Xi, SHI Pei-cheng. Strength calculation of high contact-ratio spur gear based on dynamics analysis[J]. Chinese Journal of Engineering Design, 2020, 27(6): 729-734.
[11] LIU Shao-hu, GAN Quan-quan, LUO Xiao, JI Guang-qi. Study on cleaning effect of cuttings bed destroyer in inclined section of horizontal well[J]. Chinese Journal of Engineering Design, 2020, 27(5): 577-584.
[12] LI Cheng-bing, LEI Peng. Stress analysis and weak roof performance evaluation for 5 000 m3vertical dome storage tank[J]. Chinese Journal of Engineering Design, 2020, 27(2): 182-190.
[13] WANG Fei, GONG Guo-fang, QIN Yong-feng. Controller design for the hybrid cutterhead driving system of TBMunder limited rotational speed condition[J]. Chinese Journal of Engineering Design, 2019, 26(6): 722-727.
[14] WU Wen-jiang, WANG Zhen-xing, GAO Zhan-feng, GAO Jian-zhong, Lü Yan-jun. Simulation analysis and experimental study on stress state of sand-collecting shovel during sand-collecting process[J]. Chinese Journal of Engineering Design, 2019, 26(4): 490-496.
[15] LIU Zhao, YOU Hong-xin, SUN Liang, YANG Yu-ling, LIU Hua-qing. Design of suspended hydraulic transmission rotary detection platform for large spherical tank[J]. Chinese Journal of Engineering Design, 2019, 26(3): 267-273.