Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (3): 347-357    DOI: 10.3785/j.issn.1006-754X.2022.00.038
Modeling, Simulation, Analysis and Decision     
Research on modeling and control strategy of mechatronics system for radial ring braiding machine
Pei-can ZHUANG(),Qi-yang LI,Xin-fu CHI,Yi-ze SUN()
College of Mechanical Engineering, Donghua University, Shanghai 201620, China
Download: HTML     PDF(9047KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to solve the problem that the electric motor of the radial ring braiding machine was easy to overload or even burn out due to the difference between the electrical characteristics and mechanical characteristics of radial ring braiding machine, the mechatronics system model of the braiding machine was established. The model included a braided ring model and a traction sliding table model. The braided ring model was coupled by the closed transmission of 88 gears and the synchronous drive of 4 permanent magnet synchronous motors, while the traction sliding table model was coupled by drive of permanent magnet synchronous motor and motion of ball screw. In order to solve the uneven load of 4 motors on the braided ring caused by the tooth side clearance, a torque balance control method was proposed, that was, the main motor was controlled by the speed loop and the current loop, and the slave motor was only controlled by current loop; the output of the speed loop of the main motor was taken as the given quantity of the current loop of the slave motor. In order to quickly make the speed of braided ring motor and the speed of sliding table motor meet the cooperative relationship, a decoupling control method for tracking performance and synchronous performance, i.e. cross coupling decoupling control method, was proposed. The tracking error compensation was reduced to less than the amplitude according to a certain proportion, so as to highlight the effect of coordinated error compensation. The field experiment results showed that, the proposed control strategy could make the output torque difference of the 4 motors of the braided ring smaller, and could greatly shorten the time for the speed of the braided ring main motor and the sliding table motor to meet the cooperative requirements in the motor start-up and acceleration and deceleration stages. According to control strategy, the servo control system of the braiding machine was designed. The research results play an important role in improving the weaving quality of fabrics.



Key wordsradial ring braiding machine      mechatronics      torque balance control      decoupling control     
Received: 23 July 2021      Published: 05 July 2022
CLC:  TM351  
Corresponding Authors: Yi-ze SUN     E-mail: 18437951376@163.com;sunyz@dhu.cn
Cite this article:

Pei-can ZHUANG,Qi-yang LI,Xin-fu CHI,Yi-ze SUN. Research on modeling and control strategy of mechatronics system for radial ring braiding machine. Chin J Eng Design, 2022, 29(3): 347-357.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.038     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I3/347


径向环形编织机机电一体化系统建模及控制策略研究

针对径向环形编织机电气特性与机械特性的差异导致的编织机电机易超载甚至被烧毁的问题,建立了编织机机电一体化系统模型。该模型包括编织环模型和牵引滑台模型,其中编织环模型由88个齿轮的闭合传动与4个永磁同步电机的同步驱动耦合而成,牵引滑台模型由永磁同步电机的驱动与滚珠丝杠的运动耦合而成。为了解决编织环上4个电机因齿侧间隙等的存在造成的负载不均,提出了转矩均衡控制方法,即:主电机受速度环和电流环双环闭合控制,从电机只受电流环控制;主电机速度环的输出量作为从电机电流环的给定量。为了较快地使编织环电机组的转速与滑台电机的转速满足协同关系,提出了跟踪性能与同步性能解耦控制方法即交叉耦合解耦控制方法,将跟踪误差补偿量按一定比例关系缩小至幅值以下,以凸显协调误差补偿的效果。进行了现场实验,结果表明,采取所提出的控制策略能够使编织环4个电机的输出转矩相差较小,而且在电机启动与加减速阶段可以使编织环主电机与滑台电机的转速达到协同要求的时间大幅缩短。根据控制策略设计了编织机伺服控制系统。研究结果对织物编织质量的提高起到了重要的指导作用。


关键词: 径向环形编织机,  机电一体化,  转矩均衡控制,  解耦控制 
Fig.1 Position relationship between gear and motor on braided ring
Uisa,sb,scUα,Uβ
U00,0,00,0
U11,0,023Udc,0
U21,1,013Udc,33Udc
U30,1,0-13Udc,33Udc
U40,1,1-23Udc,0
U50,0,1-13Udc,-33Udc
U61,0,113Udc,-33Udc
U71,1,10,0
Table 1 Correspondence between basic voltage vector and switching sequence
Fig.2 Block diagram of mechatronics of braided ring and its torque balance control system
Fig.3 Block diagram of traditional cross coupling control system for braided ring main motor and sliding table motor
Fig.4 Block diagram of cross coupling decoupling control system for braided ring main motor and sliding table motor
Fig.5 Comparison of current output under traditional cross coupling control and cross coupling decoupling control during motor starting
Fig.6 Radial ring braiding machine
Fig.7 Servo control system of radial ring braiding machine
Fig. 8 Speed of braiding machine motor
Fig.9 Torque of braiding machine motor
Fig.10 Speed of braiding machine main motor and sliding table motor
Fig.11 Actual speed ratio of braiding machine main motor and sliding table motor
[1]   CHOU T W, KO F K. Textile structural composites[M]. Amsterdam: Elsevier Science Publishers, 1989: 50-70.
[2]   MOURITZA A P, BANNISTE M K, FALZONB P J, et al. Review of applications for advanced three dimensional fibre textile composites[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(12): 1445-1461. doi:10.1016/s1359-835x(99)00034-2
doi: 10.1016/s1359-835x(99)00034-2
[3]   郑锡涛,屈天骄.三维编织复合材料制造技术及力学性能研究进展[J]. 航空制造技术,2011(20):38-44. doi:10.3969/j.issn.1671-833X.2011.20.004
ZHENG Xi-tao, QU Tian-jiao. Progress of investigation on manufacturing technology and mechanical properties of 3D braided composites[J]. Aeronautical Manufacturing Technology, 2011(20): 38-44.
doi: 10.3969/j.issn.1671-833X.2011.20.004
[4]   ZHANG M Q, ZOU T, HUANG Y C, et al. Braided thin-walled biodegradable ureteral stent: Preliminary evaluation in a canine model[J]. International Journal of Urology, 2014, 21(4): 401-407. doi:10.1111/iju.12297
doi: 10.1111/iju.12297
[5]   刘宜胜,徐海亮,吴震宇,等.三维编织机运动仿真分析及其轨道优化设计[J].纺织学报,2017,38(4):134-139. doi:10.13475/j.fzxb.20160404606
LIU Yi-sheng, XU Hai-liang, WU Zhen-yu, et al. Motion simulation analysis and track optimal design for three-dimensional braiding machine[J]. Journal of Textile Research, 2017, 38(4): 134-139.
doi: 10.13475/j.fzxb.20160404606
[6]   李志勇.硬轴联结多电机功率平衡控制方法[J].电机与控制学报,2009,13(3):398-401,407. doi:10.3969/j.issn.1007-449X.2009.03.016
LI Zhi-yong. Power balance control in fixed joint multi motor system[J]. Electric Machines and Control, 2009, 13(3): 398-401, 407.
doi: 10.3969/j.issn.1007-449X.2009.03.016
[7]   谢万宇,孟婥,卜剑秋,等.基于EtherCAT 多轴伺服系统的编织机控制系统[J].东华大学学报(自然科学版),2019,45(3):418-424.
XIE Wan-yu, MENG Chuo, BU Jian-qiu, et al. Braiding machine control system based on EtherCAT multi-axis servo system[J]. Journal of Donghua University (Natural Science Edition), 2019, 45(3): 418-424.
[8]   KESSELS J F A, AKKERMAN R. Prediction of the yarn trajectories on complex braided preforms[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(8): 1073-1081. doi:10.1016/s1359-835x(02)00075-1
doi: 10.1016/s1359-835x(02)00075-1
[9]   YAO L L, MENG Z, BU J Q, et al. Non-linear dynamic feature analysis of a multiple-stage closed-loop gear transmission system for 3D circular braiding machine[J]. Symmetry, 2020, 12(11): 1788. doi:10.3390/sym12111788
doi: 10.3390/sym12111788
[10]   ZHANG Y J, MENG Z, SUN Y Z. Dynamic modeling and chaotic analysis of gear transmission system in a braiding machine with or without random perturbation[J]. Shock and Vibration, 2016: 1-12. doi:10.1155/2016/8457645
doi: 10.1155/2016/8457645
[11]   YAO L L, MENG Z, BU J Q, et al. Investigation of nonlinear characteristics of a gear transmission system in a braiding machine with multiple excitation factors[J]. Shock and Vibration, 2020: 1-20. doi:10.1155/2020/2747204
doi: 10.1155/2020/2747204
[12]   ZHANG Y C, ZHU J G. A simple method to reduce torque ripple in direct torque-controlled permanent magnet synchronous motor by using vectors with variable amplitude and angle[J]. IEEE Transactions on Industrial Electronics, 2011, 58(7): 2848-2859. doi:10.1109/tie.2010.2076413
doi: 10.1109/tie.2010.2076413
[13]   吴婷,王辉,罗德荣,等.一种新型内置式永磁同步电机初始位置检测方法[J].电工技术学报,2018,33(15): 3578-3585.
WU Ting, WANG Hui, LUO De-rong, et al. A new initial position estimation method for interior permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3578-3585.
[14]   吴公平,黄守道,饶志蒙,等.新型N × 3相永磁同步电机的特性分析及其预测控制[J].中国电机工程学报,2019,39(4):1171-1181. doi:10.13334/j.0258-8013.pcsee.180820
WU Gong-ping, HUANG Shou-dao, RAO Zhi-meng, et al. Characteristic analysis and predictive control of a novel N × 3 phase permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2019, 39(4): 1171-1181.
doi: 10.13334/j.0258-8013.pcsee.180820
[15]   刘佳敏,葛召炎,吴轩,等.基于占空比调制的永磁同步电机预测电流控制[J].中国电机工程学报,2020,40(10):3319-3327. doi:10.13334/j.0258-8013.pcsee.190897
LIU Jia-min, GE Shao-yan, WU Xuan, et al. Predictive current control of permanent magnet synchronous motor based on duty-cycle modulation[J]. Proceedings of the CSEE, 2020, 40(10): 3319-3327.
doi: 10.13334/j.0258-8013.pcsee.190897
[16]   CHEN H C, CHEN K Y, CHEN W Y. High efficiency current control methods based on multidimensional feedback quantization and its application to three-phase PMSM[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 5820-5829. doi:10.1109/tie.2014.2316230
doi: 10.1109/tie.2014.2316230
[17]   SIAMI M, KHABURI D A, ABBASZADEH A, et al. Robustness improvement of predictive current control using prediction error correction for permanent magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3458-3466. doi:10.1109/tie. 2016.2521734
doi: 10.1109/tie. 2016.2521734
[18]   RODRIGUEZ J, KENNEL R M, ESPINOZA J R, et al. High-performance control strategies for electrical drives: An experimental assessment[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 812-820. doi:10. 1109/tie.2011.2158778
doi: 10. 1109/tie.2011.2158778
[19]   秦艳忠,阎彦,陈炜,等.永磁同步电机参数误差补偿-三矢量模型预测电流控制[J]. 电工技术学报,2020,35(2):255-265.
QIN Yan-zhong, YAN Yan, CHEN Wei, et al. Three-vector model predictive current control strategy for permanent magnet synchronous motor drives with parameter error compensation [J]. Transactions of China Electrotechnical Society, 2020, 35(2): 255-265.
[20]   张永昌,杨海涛,魏香龙.基于快速矢量选择的永磁同步电机模型预测控制[J].电工技术学报,2016,31(6):66-73. doi:10.3969/j.issn.1000-6753.2016.06.008
ZHANG Yong-chang, YANG Hai-tao, WEI Xiang-long. Model predictive control of permanent magnet synchronous motors based on fast vector selection[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 66-73.
doi: 10.3969/j.issn.1000-6753.2016.06.008
[1] JIA Hui-bo, LI Cheng-yu, WU Xiao-jun, LIU Xiao-qing, LI Yan-lei. Guidance mechanism design of omnidirectional AGV and its motion control research[J]. Chin J Eng Design, 2018, 25(5): 546-552.