Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (6): 831-838    DOI: 10.3785/j.issn.1006-754X.2025.05.135
Optimization Design     
Dual-objective topology optimization design for focal plane substrate structure of space telescope with thermo-mechanical coupling
Xuehu CAO(),Jinghu JI()
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Download: HTML     PDF(4504KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the collaborative design challenge of stiffness, thermal stability and lightweight for the focal plane substrate structure in space telescopes, the topology optimization method is adopted to conduct optimization design. Taking the focal plane substrate structure of a large space telescope as the optimization object, a topological optimization mathematical model with dual objective functions of minimizing compliance and temperature gradient was established, and the analytic hierarchy process was employed to determine the weight coefficients of objectives. Subsequently, the COMSOL Multiphysics software was used for solution, and the topological optimization results of the substrate structure were obtained. Finally, the substrate structure was reconstructed based on the optimization results and validated through finite element simulation. The results demonstrated that compared with the original substrate, the optimized substrate achieved a 39.94% reduction in mass, a 4.92% decrease in maximum displacement, and a fundamental frequency of 801.2 Hz, thereby meeting design requirements and achieving the lightweight goal. The research results provide a reference for the lightweight design of other engineering structures.



Key wordsfocal plane substrate structure      thermo-mechanical coupling      dual-objective topology optimization      analytic hierarchy process      finite element simulation     
Received: 07 May 2025      Published: 30 December 2025
CLC:  TH 122  
Corresponding Authors: Jinghu JI     E-mail: 1436412487@qq.com;jijinghu@ujs.edu.cn
Cite this article:

Xuehu CAO,Jinghu JI. Dual-objective topology optimization design for focal plane substrate structure of space telescope with thermo-mechanical coupling. Chinese Journal of Engineering Design, 2025, 32(6): 831-838.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.135     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I6/831


空间望远镜焦平面基板结构热-力耦合双目标拓扑优化设计

针对空间望远镜焦平面基板结构刚度、热稳定性与轻量化的协同设计难题,通过拓扑优化方法对其进行优化设计。以某大型空间望远镜焦平面基板结构为优化对象,构建了以柔度最小化和温度梯度最小化为目标函数的拓扑优化数学模型,并采用层次分析法确定目标的权重系数。随后,使用COMSOL Multiphysics软件进行求解,得到了基板结构的拓扑优化结果。最后,基于优化结果对基板结构进行重构,并进行了有限元仿真验证。结果表明:与原始基板相比,优化后基板的质量减小了39.94%,最大位移减小了4.92%,基频达到801.2 Hz,满足设计要求,同时实现了轻量化目标。研究结果为其余工程结构的轻量化设计提供了参考。


关键词: 焦平面基板结构,  热-力耦合,  双目标拓扑优化,  层次分析法,  有限元仿真 
Fig.1 Schematic of original substrate structure of space telescope focal plane
相对重要性赋值
同等重要1
稍微重要3
明显重要5
强烈重要7
极端重要9
Table 1 Assignment rule of scaling method
因素柔度温度梯度
柔度19
温度梯度1/91
Table 2 Judgment matrix
Fig.2 Dual-objective topology optimization flow of substrate structure with thermo-mechanical coupling
Fig.3 Variation curve of objective function for substrate structure topology optimization
Fig.4 Cloud map of multi-slice element density distribution of substrate structure after optimization
Fig.5 Substrate structure after dual-objective optimization and reconstruction
Fig.6 Cloud maps of displacement distribution of substrate structure before and after optimization
Fig.7 Cloud maps of von Mises stress distribution of substrate structure before and after optimization
Fig.8 Cloud maps of thermal strain distribution of substrate structure before and after optimization
对比项最大位移/10-3 mm最大应力/MPa最大热应变/10-5

最大温度梯度/

(K/mm)

基频/Hz质量/kg
变化幅度/%-4.92+367.89+10.22+22.67-21.54-39.94
优化前1.2221.81.860.034 41 021.13.220
优化后1.16102.02.050.042 2801.21.934
Table 3 Performance comparison of substrate structures before and after optimization
Fig.9 Actual image of optimized substrate structure
[[1]]   SAVITSKIĬ A M, SOKOLOV I M. Questions of constructing lightened primary mirrors of space telescopes[J]. Journal of Optical Technology, 2009, 76(10): 666-669.
[[2]]   FEINBERG L D, DEAN B H, HAYDEN W L, et al. Space telescope design considerations[J]. Optical Engineering, 2012, 51(1): 011006.
[[3]]   MARTIN L. Hubble space telescope: servicing mission 3A media reference guide[EB/OL]. [2025-04-17]. .
[[4]]   BELY P Y. The design and construction of large optical telescopes[M]. New York: Springer, 2003.
[[5]]   MICHELL A G M. The limits of economy of material in frame-structures[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1904, 8(47): 589-597.
[[6]]   BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224.
[[7]]   SIGMUND O. Design of material structures using topology optimization[D]. Lyngby: Technical University of Denmark, 1994.
[[8]]   OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
[[9]]   XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures, 1993, 49(5): 885-896.
[[10]]   刘伟, 朱祥, 高婷, 等. 齿轮箱体静动态特性分析与多目标拓扑优化[J]. 机械强度, 2025, 47(2): 94-102.
LIU W, ZHU X, GAO T, et al. Static and dynamic characteristic analysis and multi-objective topology optimization of gearbox[J]. Journal of Mechanical Strength, 2025, 47(2): 94-102.
[[11]]   韩博文, 宋桂珍, 甄洪磊, 等. 某机载雷达支架轻量化与结构拓扑优化研究[J]. 机械设计与制造, 2025(7): 110-116.
HAN B W, SONG G Z, ZHEN H L, et al. Research on lightweight and structural topology optimization of an airborne radar support[J]. Machinery Design & Manufacture, 2025(7): 110-116.
[[12]]   沈保山, 钟兵, 孙强, 等. 双前桥液压助力转向摇臂支架轻量化设计[J]. 机械设计与制造, 2024(11): 285-289.
SHEN B S, ZHONG B, SUN Q, et al. Lightweight design of double front axle hydraulic power steering rocker arm bracket[J]. Machinery Design & Manufacture, 2024(11): 285-289.
[[13]]   ZENG A X, LI F. Optimal design of rectangular mirror based on topology and size optimization[C]// Applied Optics and Photonics China 2022. Beijing, Dec. 18-20, 2022.
[[14]]   MAO Z Y, YAN S K. Design and analysis of the thermal-stress coupled topology optimization of the battery rack in an AUV[J]. Ocean Engineering, 2018, 148: 401-411.
[[15]]   张小强, 鲁碧为, 刘家琴, 等. 聚变堆偏滤器拓扑优化设计与稳态热分析[J]. 工程设计学报, 2023, 30(5): 601-607.
ZHANG X Q, LU B W, LIU J Q, et al. Topology optimization design and steady-state thermal analysis of fusion reactor divertor[J]. Chinese Journal of Engineering Design, 2023, 30(5): 601-607.
[[16]]   田立勇, 敖华, 于宁, 等. 更换托辊机器人履带式底盘的仿真与优化[J]. 工程设计学报, 2024, 31(5): 603-613.
TIAN L Y, AO H, YU N, et al. Simulation and optimization of crawler chassis of idler replacement robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 603-613.
[[17]]   郭伟超, 李辉, 李丙震, 等. 热力耦合情况下的导弹导引头多尺度并行拓扑优化设计方法[J]. 航空动力学报, 2024, 39(5): 186-194.
GUO W C, LI H, LI B Z, et al. Multi-scale parallel topology optimization design method for missile seeker with thermo-dynamic coupling loads[J]. Journal of Aerospace Power, 2024, 39(5): 186-194.
[[18]]   叶帅, 曾议, 鲁晓峰, 等. 星载临边光谱仪反射镜组件优化设计分析[J]. 光子学报, 2024, 53(11): 122-138.
YE S, ZENG Y, LU X F, et al. Optimization design of the spaceborne edge spectral imager reflective mirror assembly[J]. Acta Photonica Sinica, 2024, 53(11): 122-138.
[[19]]   朱兆基, 樊勋, 董龙雷, 等. 液体火箭发动机典型承力结构动态拓扑优化设计[J]. 航天器环境工程, 2025, 42(2): 152-158.
ZHU Z J, FAN X, DONG L L, et al. Dynamic topology optimization design of typical load-bearing structures in liquid rocket engines[J]. Spacecraft Environment Engineering, 2025, 42(2): 152-158.
[[20]]   罗苇杰, 杨华实, 王猛, 等. 基于加权系数分配的火炮座圈优化设计[J]. 兵器装备工程学报, 2025, 46(2): 56-62.
LUO W J, YANG H S, WANG M, et al. Optimal design of artillery seat based on weighting coefficient distribution[J]. Journal of Ordnance Equipment Engineering, 2025, 46(2): 56-62.
[[21]]   丁华锋, 李红兵, 陈朝鹰, 等. 汽车悬架下节叉多工况结构拓扑优化设计[J]. 机械科学与技术, 2025, 44(7): 1207-1214.
DING H F, LI H B, CHEN C Y, et al. Structural topology optimization design of automotive suspension lower knuckle fork under multiple conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2025, 44(7): 1207-1214.
[[22]]   王康. 基于层次分析法的信息系统安全风险评估方法研究[D]. 合肥: 安徽建筑大学, 2024.
WANG K. Research on information system security risk assessment method based on analytic hierarchy process[D]. Hefei: Anhui Jianzhu University, 2024.
[1] Meng ZHANG,Yuqing ZHU,Peiji YANG,Yao WU. Co-optimization design of stroke and frequency for two-dimensional piezoelectric precision motion stage[J]. Chinese Journal of Engineering Design, 2025, 32(5): 675-685.
[2] Tian WU,Binfan WU,Zhonghua QIU,Yong PENG,Xiang ZHU. Multi-objective optimization of large-load insulating pull rod end based on improved MOMVO algorithm[J]. Chinese Journal of Engineering Design, 2025, 32(5): 696-707.
[3] Jian DU,Xijing ZHU,Jing LI. Design and analysis of two-dimensional precision positioning platform based on piezoelectric ceramic drive[J]. Chinese Journal of Engineering Design, 2025, 32(2): 199-207.
[4] Meijuan XU,Qiliang WANG,Yongfeng HONG,Yiping LONG,Tong LIU,Bin GUO. Design and analysis of nested cosine function type multi-axis flexure hinge[J]. Chinese Journal of Engineering Design, 2025, 32(2): 252-261.
[5] Zhihao XU,Xiaowei LU,Yuxin XIE,Leijie LAI. Design and analysis of three-degree-of-freedom large-stroke flexible tip-tilt stage driven by voice coil motor[J]. Chinese Journal of Engineering Design, 2025, 32(1): 82-91.
[6] Zhangwei XIE,Xingbo ZHANG,Zhe XU,Yu ZHANG,Fengyun ZHANG,Xi WANG,Pingping WANG,Shufeng SUN,Haitao WANG,Jixin LIU,Weili SUN,Aixia CAO. Construction of surface temperature monitoring system for laser machining parts based on digital twin[J]. Chinese Journal of Engineering Design, 2023, 30(4): 409-418.
[7] Bowei XIE,Mohui JIN,Zhou YANG,Jieli DUAN,Mingyu QU,Jinhui LI. Research on mechanical properties and model parameters of 3D printed TPU material[J]. Chinese Journal of Engineering Design, 2023, 30(4): 419-428.
[8] Yi LI,Guo-hua CHEN,Ming XIA,Bo LI. Design and simulation optimization of motorized spindle cooling system[J]. Chinese Journal of Engineering Design, 2023, 30(1): 39-47.
[9] Wen-bing TU,Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG. Research on dynamic characteristics of rolling bearing under different component fault conditions[J]. Chinese Journal of Engineering Design, 2023, 30(1): 82-92.
[10] LI Yang, NIE Yu-fei. Design and analysis of heat insulation sealing door of sodium combustion test plant[J]. Chinese Journal of Engineering Design, 2022, 29(1): 115-122.
[11] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chinese Journal of Engineering Design, 2021, 28(3): 367-373.
[12] LIU Yong-jiang, PENG Xuan-lin, TANG Xiong-hui, LI Hua, QI Zi-mei. Resonance failure analysis and optimal design of axial cooling fan[J]. Chinese Journal of Engineering Design, 2021, 28(2): 203-209.
[13] LI Zong-hao, ZHU Jun, CHEN Wei-qiu. Stress analysis of offshore wind power jacket during on-land construction[J]. Chinese Journal of Engineering Design, 2021, 28(2): 218-226.
[14] WANG Ya-kun, REN Jia-jun, LI Ai-feng, MENG Hao-nan. Layout optimization design of operation interface in mining excavator cab[J]. Chinese Journal of Engineering Design, 2020, 27(4): 469-477.
[15] LI Xuan, ZHOU Shuang-wu, LU Song, DING Bing-xiao. Design and analysis of two-DOF micro-positioning platform based on two-level lever mechanism[J]. Chinese Journal of Engineering Design, 2020, 27(4): 533-540.