Innovative Design |
|
|
|
|
Modular design and safety analysis of mountain geophysical electric drilling rig |
Zhi-qiang HUANG1,2( ),Hong-mei YU1,2,Ya-chao MA1,2,Dou XIE1,2,Cao ZHOU1,2 |
1.School of Mechatronic Engineering,Southwest Petroleum University,Chengdu 610500,China 2.Key Laboratory of Petroleum and Natural Gas Equipment of the Ministry of Education,Southwest Petroleum University,Chengdu 610500,China |
|
|
Abstract The mountain geophysical drilling rig driven by fuel engine has loud noise, serious exhaust emission, low drilling efficiency and inconvenient disassembling and handling. In order to solve the above problems, the modular design scheme of mountain geophysical electric drilling rig was put forward by using electric energy drive instead of fuel engine drive. Based on the fuzzy comprehensive evaluation method, the quantitative evaluation of the driving motor and transmission mode of the electric drilling rig was carried out, so it was determined that the driving motor was permanent magnet synchronous motor and the transmission mode was sprocket chain transmission. At the same time, through comparison, turbo worm reducer, π-shaped chassis and single mast were respectively selected as reducer, support parts and guide parts of the electric drilling rig. On this basis, the safety analysis of electric drilling rig was carried out using finite element analysis. The results showed that the maximum stress of the drilling rig occured at the right angle of the π-shaped chassis connecting the mast, which was less than the allowable stress of the drilling rig material. It also indicated that the structure of the drilling rig was safe, and motor circuit was safe and reliable. The drilling test results showed that the quality of the independently designed mountain geophysical electric drilling rig was reduced by 57% compared with the existing mountain geophysical drilling rig. The drilling operation had low noise and no tail gas emission. The maximum lifting force and torque provided exceeded 71% and 6.25% of the design standard respectively, indicating that its overall performance met the requirements. The research results provide a reference forthe research and development of green and efficient oil and gas exploration equipment.
|
Received: 26 March 2021
Published: 06 May 2022
|
|
山地物探电动钻机模块化设计及安全性分析
以燃油发动机驱动的山地物探钻机在钻井时噪声大,尾气排放严重,钻井效率低,拆装、搬运不便。为解决上述问题,以电能驱动代替燃油机驱动,提出了山地物探电动钻机模块化设计方案。基于模糊综合评价法,开展了电动钻机驱动电机和传动方式的定量评价,确定其驱动电机为永磁同步电机,传动方式为链轮链条传动,同时通过对比优选出电动钻机的减速器、支撑部件和导向部件分别为涡轮蜗杆减速器、π形底盘和单桅杆。在此基础上,采用有限单元分析方法进行了电动钻机的安全性分析,结果表明:钻机的最大应力出现在π形底盘连接桅杆的直角处,其值小于钻机材料的许用应力,钻机的结构安全,且电机电路安全可靠。钻井实验结果表明:自主设计的山地物探电动钻机较现有山地物探钻机质量减小了57%,钻井作业时噪声低,无尾气排放,可提供的最大提升力和扭矩分别超过设计标准的71%与6.25%,表明其整体性能符合要求。研究结果为绿色高效的油气勘探装备的研发提供了参考。
关键词:
山地物探钻机,
电动,
模糊综合评价法,
安全分析,
现场实验
|
|
[1] |
李家华,闫世普,蔡陆阳,等.山地钻机液压马达轴承拆装工具[J].工程机械与维修,2018(2):74-75. doi:10.3969/j.issn.1006-2114.2018.02.029 LI Jia-hua, YAN Shi-pu, CAI Lu-yang, et al. Mountainous drilling machine hydraulic motor bearing disassembly tool[J]. Construction Machinery and Maintenance, 2018(2): 74-75.
doi: 10.3969/j.issn.1006-2114.2018.02.029
|
|
|
[2] |
丛晶日.WT50物探钻机设计与分析[D].大庆:东北石油大学,2011:4-5. CONG Jing-ri. Design and analysis of geophysical rig[D]. Daqing: Northeast Petroleum University, 2011: 4-5.
|
|
|
[3] |
王毅.新型轻便旋转式物探钻机总体设计及动力学分析[D].西安:西安石油大学,2017:1-6. WANG Yi. Overall design and dynamic analysis of a new type of portable rotary geophysical drilling rig[D]. Xi'an: Southwest Petroleum University, 2017: 1-6.
|
|
|
[4] |
李国宏,丁晓鹏,裴志明,等.浅谈钻机的噪声控制[J].石油矿场机械,2003,32(4):52-53. doi:10.3969/j.issn.1001-3482.2003.04.021 LI Guo-hong, DING Xiao-peng, PEI Zhi-ming, et al. Brief analysis on noise control of rigs[J]. Oil Field Equipment, 2003, 32(4): 52-53.
doi: 10.3969/j.issn.1001-3482.2003.04.021
|
|
|
[5] |
贺子延,杨凤申,刘坤.新型轻便气动钻机的开发与应用[J].物探装备,2018,28(2):108-111. doi:10.3969/j.issn.1671-0657.2018.02.010 HE Zi-yan, YANG Feng-shen, LIU Kun. Development and application of new portable pneumatic drill[J]. Geophysical Prospecting Equipment, 2018, 28(2): 108-111.
doi: 10.3969/j.issn.1671-0657.2018.02.010
|
|
|
[6] |
樊慧文,李玲毓,张向前.新型山地钻机的开发与应用[J]. 物探装备,2012,22(3):145-148,156. doi:10.3969/j.issn.1671-0657.2012.03.002 FAN Hui-wen, LI Ling-yu, ZHANG Xiang-qian. New portable drill rig development and application[J]. Geophysical Prospecting Equipment, 2012, 22(3): 145-148, 156.
doi: 10.3969/j.issn.1671-0657.2012.03.002
|
|
|
[7] |
杨凤申,刘坤,陈宪战,等.80 m山地钻机的开发与应用[J]. 物探装备,2011,21(1):10-12. YANG Feng-shen, LIU Kun, CHEN Xian-zhan, et al. Development and application of mountain rig with 80 m drilling depth[J]. Geophysical Prospecting Equipment, 2011, 21(1): 10-12.
|
|
|
[8] |
白文翔.活塞式空压机在山地物探爆破孔施工中的应用研究[D].长春:吉林大学,2005:3-9. BAI Wen-xiang. Application research on piston air compressor in country mountain physical prospecting blast hole construction[D]. Changchun: Jilin University, 2005: 3-9.
|
|
|
[9] |
郑红.滚珠丝杠传动机构的支承与轴端结构分析[J].现代制造技术与装备,2019(5):1-3. doi:10.3969/j.issn.1673-5587.2019.05.003 ZHENG Hong. Support and shaft structure analysis of ball screw transmission mechanism[J]. Modern Manufacturing Technology Equipment, 2019(5): 1-3.
doi: 10.3969/j.issn.1673-5587.2019.05.003
|
|
|
[10] |
田辉,曼茂立,苏晨阳,等.一种基于耦合追踪策略的太阳追踪系统设计[J].科技创新与应用,2016(34): 28-29. TIAN Hui, MAN Mao-li, SU Chen-yang, et al. A solar tracking system design based on coupled tracking strategy[J]. Technology Innovation and Application, 2016(34): 28-29.
|
|
|
[11] |
孙新城,陈建能,武传宇,等.三轮非圆同步带传动试验台设计与应用[J].农业机械学报,2021,52(1):73-81. doi:10.6041/j.issn.1000-1298.2021.01.008 SUN Xin-cheng, CHEN Jian-neng, WU Chuan-yu, et al. Design and test of three-pulley noncircular synchronous belt transmission test rig[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):73-81.
doi: 10.6041/j.issn.1000-1298.2021.01.008
|
|
|
[12] |
TAO Jiang, YI Ping-you, GUANG Yan-xue, et al. Research on the dynamic characteristics of mast mechanism of rotary drilling rig[J]. Procedia Engineering, 2011, 16: 763-771. doi:10.1016/j.proeng. 2011.08.1152
doi: 10.1016/j.proeng. 2011.08.1152
|
|
|
[13] |
满忠委,庞玉,付衍法,等.旋挖钻机桅杆结构优化分析[J]. 建筑机械化, 2013(5):3. doi:10.4028/www.scientific.net/amm.48-49.783 MAN Zhong-wei, PANG Yu, FU Yan-fa, et al. Structure optimization analysis for mast of rotary drilling rig[J]. Construction Mechanization, 2013(5): 3.
doi: 10.4028/www.scientific.net/amm.48-49.783
|
|
|
[14] |
郑会芬.旋挖钻机桅杆的结构设计[J].中国机械,2014(24):172-173. ZENG Hui-Feng. Structure design of the mast of rotary drilling rig[J]. China Machinery, 2014(24): 172-173.
|
|
|
[15] |
黄志强,马亚超,李琴,等.天然气管输减阻剂减阻效果现场评价方法研究[J].西南石油大学学报(自然科学版),2016,38(4):157-165. HUANG Zhi-qiang, MA Ya-chao, LI Qin, et al. Method for field evaluation of drag reduction effect of natural gas drag reduction agent[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(4): 157-165.
|
|
|
[16] |
严宇,李庚银,周明,等.基于模糊综合评价的交易结算偏差电量处理方法[J].电力系统自动化,2019,43(3): 200-204. YAN Yu, LI Geng-yin, ZHOU Ming, et al. A method to deal with the deviation electric quantity of transaction settlement based on fuzzy comprehensive evaluation[J]. Automation of Electric Power System, 2019, 43(3): 200-204.
|
|
|
[17] |
程志友,陶青,朱唯韦,等.基于改进模糊综合评判法的空压机状态评估[J].电测与仪表,2020,57(3):12-18. CHENG Zhi-you, TAO Qing, ZHU Wei-wei, et al. State evaluation of air compressor based on improved fuzzy comprehensive evaluation method[J]. Electrical Measurement & Instrumentation, 2020, 57(3): 12-18.
|
|
|
[18] |
蔡俊.齿轮齿条钻机系统动力学研究[D].荆州:长江大学, 2016:43-44. CAI Jun. A dynamics research of rack and pinion drill rig system[D]. Jingzhou: Yangtze University, 2016: 43-44.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|