|
|
Working performance theoretical analysis and structure optimization of oscillation impacter |
LI Min1, LI Kai-xing2, YANG Peng3, WANG Yang4 |
1. College of Basic Science, Shengli College, China University of Petroleum, Dongying 257100, China;
2. China Oilfield Services Limited, Tianjin 300450, China;
3. SINOPEC(China Petrochemical Corporation) Shengli Oil Field Exploration and Development Research Institute, Dongying 257100, China;
4. Kunlun Energy Investment(Shangdong) Co., Ltd., Qingdao 266500, China |
|
|
Abstract In recent years, oscillation impacter has been used to improve its penetration rate at home and abroad. The basic theory and structure optimization method in the engineering application were researched. The theory of transient flow was used to establish the pressure model of hydraulic impulse wave by analyzing the structure and working principle of the oscillation impacter. Numerical simulation of hydraulic impulse of oscillation impacter by MATLAB software programming was studied, and the influence of different factors on vibration impact performance was analyzed. The variation characteristic of the flow area of the key parts-disc valve was conducted. The effect law of the eccentricity e and the flow area radius r on the performance was obtained. The objective function which generated conclusive force was built. The steps of the optimization of the hydraulic pulser were established. On this basis, the model machine was processed, and indoor experiments were carried out. The experiment verified the rationality of the design, the validity of the theoretical analysis and the accuracy of the numerical calculation of the oscillation impacter. The results can offer the guide for optimizing the hydraulic pulser, and provide theoretical support for drilling field application of the oscillation impacter.
|
Received: 16 November 2017
Published: 28 April 2018
|
|
振荡冲击器工作性能理论分析及其结构优化
针对国内外近几年来主要使用振荡冲击器来提高机械钻速,对此类工具的工作性能进行了理论研究并提出了它在工程技术应用中的结构优化方法。在对振荡冲击器的结构及工作原理进行分析的基础上,首次将瞬变流理论引入并建立了水力脉冲波动压力模型,利用MATLAB软件进行了振荡冲击器水力脉冲数值模拟计算,进而分析了不同因素对振动冲击性能的影响。得出了关键零部件——盘阀的过流面积变化特性,以及盘阀偏心距e和过流孔半径r对振荡冲击器性能影响规律。建立了该工具产生振动冲击的目标函数,并给出了水力脉冲装置优化步骤。在此基础上,加工了工具的样机,并进行了室内试验。试验验证了振荡冲击器的设计合理性、理论分析的有效性和数值计算的准确性。研究结果为水力脉冲工具优化提供指导意义,并为振荡冲击器在钻井现场应用提供理论支撑。
关键词:
钻速,
振荡冲击器,
盘阀,
水力脉冲,
理论分析,
优化
|
|
[1] 董学成,熊继有,王国华,等.振荡冲击器工作特性研究[J].机械工程学报,2014,50(21):197-205. DONG Xue-cheng, XIONG Ji-you, WANG Guo-hua, et al. Study on running characteristic of oscillation impacter for oil-drilling[J]. Journal of Mechanical Engineering, 2014, 50(21):197-205.
[2] BARTON S P, BAEZ F, ALALI A. Drilling performance improvements in gas shale plays using a novel drilling agitator device[C]//The North American Unconventional Gas Conference and Exhibition, Woodlands, Texas, Jun.14-16, 2011.
[3] MELAMED Y, KISELEV A, GELFGAT M, et al. Hydraulic hammer drilling technology:developments and capabilities[J]. Journal of Energy Resources Technology, 2000, 122(1):1-7.
[4] LANE P Skyles, YOSEF A Amiraslani. Converting static friction to drill further and fast in directional holes[C]//IADC/SPE Drilling Conference and Exhibition, San Diego, California, Mar.6-8, 2012.
[5] 胥豪,牛洪波,唐洪林,等.水力振荡器在新场气田新沙21-28H井的应用[J].天然气工业,2013,33(3):64-67. XU Hao, NIU Hong-bo, TANG Hong-lin, et al. Application of hydraulic oscillators to the development of Well Xinsha 21-28H in the Xinchang Gas Field·western Sichuan Basin[J]. Natural Gas Industry, 2013, 33(3):64-67.
[6] 张璀,张金成,王甲昌.AG-Itator水力振荡器及其在我国的试验应用[J].探矿工程(岩土钻掘工程),2015,42(7):54-57. ZHANG Cui, ZHANG Jin-cheng, WANG Jia-chang. Experimental application of AG-Itator hydraulic oscillator in China[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2015, 42(7):54-57.
[7] 刘志坚,李榕.172mm水力振荡器在川西中浅水平井的应用[J].天然气技术与经济,2012,6(6):37-39. LIU Zhi-jian, LI Rong. Application of hydraulic oscillator with 172mm to medium-to-shallow horizon-tall wells, western Sichuan Basin[J]. Nature Gas Technology and Economy, 2012, 6(6):37-39.
[8] 罗朝东,鄢标,夏成宇,等.水力振荡器性能影响因素试验研究[J].石油机械,2016,44(1):25-28. LUO Chao-dong, YAN Biao, XIA Cheng-yu, et al. Experimental study on the factors impacting the performance of the hydraulic oscillator[J]. China Petroleum Machinery, 2016, 44(1):25-28.
[9] 张辉,于文涛,陈忠帅,等.水力脉冲轴向振荡减阻工具研制[J].石油矿场机械,2014,43(7):73-77. ZHANG Hui, YU Wen-tao, CHEN Zhong-shuai, et al. Development of hydropulse axial-oscillation friction-reduce tool[J]. Oil Field Equipment, 2014, 43(7):73-77.
[10] 王杰,夏成宇,冯定,等.新型涡轮驱动水力振荡器设计与实验研究[J].工程设计学报,2016,23(4):391-395. WANG Jie, XIA Cheng-yu, FENG Ding, et al. Design and experimental study on a new type of turbine driven hydraulic oscillator[J]. Chinese Journal of Engineering Design, 2016, 23(4):391-395.
[11] 张辉,吴仲华,蔡文军.水力振荡器的研制及现场试验[J].石油机械,2014,42(6):12-15. ZHANG Hui, WU Zhong-hua, CAI Wen-jun. Development and field testing of hydraulic oscillator[J]. China Petroleum Machinery, 2014, 42(6):12-15.
[12] 付加胜,李根生,史怀忠,等.井下振动减摩技术研究进展[J].石油机械,2012,40(10):6-10,45. FU Jia-sheng, LI Gen-sheng, SHI Huai-zhong, et al. Research progress of the downhole vibration antifriction technology[J]. China Petroleum Machinery, 2012, 40(10):6-10, 45.
[13] CARLOS R J, CARLOSV M A, CARVALHO D J L, et al. A new type of hydraulic hammer compatible with conventional drilling fluids[C]//SPE Annual Technical Conference and Exhibition, Denver, Colorado, Oct.5-8, 2003.
[14] STAYSKO R, FRANCIS B, COTE B. Fluid hammer drives down well costs[C]//SPE/IADC Drilling Conference and Exhibition, Amsterdam, Mar.1-3, 2011.
[15] 袁恩熙.工程流体力学[M].北京:石油工业出版社,1986:221-222. YUAN En-xi. Engineering fluid mechanics[M]. Beijing:Petroleum Industry Press, 1986:221-222.
[16] 王树人.水击理论与水击计算[M].北京:清华大学出版社,1981:20-24. WANG Shu-ren. Theory of water hammer and water hammer calculation[M]. Beijing:Tsinghua University Press, 1981:20-24.
[17] 张国忠.管道瞬变流动分析[M].青岛:中国石油大学出版社,1994:27-29. ZHANG Guo-zhong. Pipeline transient flow analysis[M]. Qingdao:China University of Petroleum Press, 1994:27-29.
[18] WYLIE E B, STREETER V L.瞬变流[M].索丽生,译.北京:中国水利电力出版社,1983:22-24. WYLIE E B, STREETER V L. Transient flow[M]. Translated by SUO Li-sheng. Beijing:China Water & Power Press, 1983:22-24.
[19] 陈廷根,管志川.钻井工程理论与技术[M].青岛:中国石油大学出版社,2000:139-142. CHEN Ting-gen, GUAN Zhi-chuan. The theory and technology of drilling engineering[M]. Qingdao:China University of Petroleum Press, 2000:139-142. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|