Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (3): 326-333    DOI: 10.3785/j.issn.1006-754X.2025.04.136
机器人与机构设计     
基于Water Bomb折纸结构的软体机器鱼设计与性能分析
张宇(),楚凯,舒申,王家梁,周浩,胡俊峰()
江西理工大学 机电工程学院,江西 赣州 341000
Design and performance analysis of soft robotic fish based on Water Bomb origami structure
Yu ZHANG(),Kai CHU,Shen SHU,Jialiang WANG,Hao ZHOU,Junfeng HU()
School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
 全文: PDF(3159 KB)   HTML
摘要:

目前,以刚性材料为主体制作的机器鱼在水中具有良好的控制精度和较快的游动速度,但由于刚性材料自身的刚度较高,机器鱼通常无法很好地适应水中的狭窄通道。为了解决上述问题,将折纸结构应用于机器鱼的结构设计,设计了一种可在水中通过狭窄通道且具有良好游动性能的软体机器鱼。该机器鱼由头部、躯干和尾部组成,其中:躯干部分采用Water Bomb折纸结构,利用折纸结构的收缩和膨胀来实现躯干部分的径向变化;尾部利用软体折纸驱动器的弯曲来实现摆动,从而实现机器鱼的前行和转弯。通过实验测得了机器鱼在水箱中的运动情况,其最高游动速度为72.67 mm/s,最快转向速度为10.67 (°)/s,且能在最大负载为150 g的条件下稳定运动。结果表明,所设计的机器鱼不仅可以在水中灵活运动,而且能够利用躯干部分的折叠特性通过部分狭窄通道和障碍。这为软体机器鱼的设计与研究提供了一种新思路。

关键词: 软体机器鱼软体折纸驱动器Water Bomb折纸结构折叠特性    
Abstract:

At present, robotic fish made mainly of rigid materials have good control accuracy and relatively fast swimming speed in water. However, due to the high rigidity of rigid materials, the robotic fish usually cannot adapt well to the narrow passages in water. To solve the above problems, the origami structure was applied to the structural design of robotic fish, and a soft robotic fish that could pass through narrow passages in water and had good swimming performance was designed. This robotic fish was composed of a head, a trunk and a tail. The trunk part adopted the Water Bomb origami structure, and the radial change of the trunk part was achieved by the contraction and expansion of the origami structure. The tail used the bending of the soft origami driver to achieve swing, thereby enabling the forward movement and turning of the robotic fish. The movement of the robotic fish in the water tank was measured through experiments. Its maximum swimming speed was 72.67 mm/s, the fastest turning speed was 10.67 (°)/s, and it could move stably under the condition of a maximum load of 150 g. The results show that the designed robotic fish can not only move flexibly in water, but also utilize the folding characteristics of the trunk part to pass through some narrow passages and obstacles, which provides a new idea for the design and research of soft robotic fish.

Key words: soft robotic fish    soft origami driver    Water Bomb origami structure    folding characteristics
收稿日期: 2024-04-30 出版日期: 2025-07-02
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(52165011);江西省自然科学基金资助项目(20212BAB204028);江西省自然科学基金重点项目(联合资助)(20202ACBL204009);江西省研究生创新专项资金项目(YC2023-S652)
通讯作者: 胡俊峰     E-mail: 1587402060@qq.com;hjfsuper@126.com
作者简介: 张 宇(2001—),男,硕士生,从事软体机器人研究,E-mail: 1587402060@qq.com,https://orcid.org/0009-0008-9519-3875
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张宇
楚凯
舒申
王家梁
周浩
胡俊峰

引用本文:

张宇,楚凯,舒申,王家梁,周浩,胡俊峰. 基于Water Bomb折纸结构的软体机器鱼设计与性能分析[J]. 工程设计学报, 2025, 32(3): 326-333.

Yu ZHANG,Kai CHU,Shen SHU,Jialiang WANG,Hao ZHOU,Junfeng HU. Design and performance analysis of soft robotic fish based on Water Bomb origami structure[J]. Chinese Journal of Engineering Design, 2025, 32(3): 326-333.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.136        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I3/326

图1  基于Water Bomb折纸结构的软体机器鱼三维模型
图2  机器鱼游动原理
图3  软体折纸驱动器结构
图4  机器鱼尾部结构
图5  机器鱼的头部及躯干结构设计
图6  机器鱼样机与实验平台
图7  不同摆动频率下机器鱼的直线游动速度
图8  不同驱动气压下机器鱼的直线游动速度
图9  机器鱼转弯运动示意
图10  不同摆动频率下机器鱼的转向速度
图11  不同驱动气压差下机器鱼的转向速度
图12  不同负载下机器鱼的直线游动速度
图13  机器鱼直线游动演示
图14  机器鱼转弯演示
图15  机器鱼转弯避障演示
图16  机器鱼通过狭窄通道演示
[1] COLGATE J E, LYNCH K M. Mechanics and control of swimming: a review[J]. IEEE Journal of Oceanic Engineering, 2004, 29(3): 660-673.
[2] 迟冬祥, 颜国正. 仿生机器人的研究状况及其未来发展[J]. 机器人, 2001, 23(5): 476-480. doi:10.3321/j.issn:1002-0446.2001.05.021
CHI D X, YAN G Z. Biomimetic robot research and its perspective[J]. Robot, 2001, 23(5): 476-480.
doi: 10.3321/j.issn:1002-0446.2001.05.021
[3] RYUH Y S, YANG G H, LIU J D, et al. A school of robotic fish for mariculture monitoring in the sea coast[J]. Journal of Bionic Engineering, 2015, 12(1): 37-46.
[4] SAHOO S, DONG X H, LIU Z Q, et al. Under water waste cleaning by mobile edge computing and intelligent image processing based robotic fish[EB/OL]. (2020-08-31) [2024-04-10]. .
[5] 成巍. 仿生水下机器人仿真与控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2004: 21-32.
CHENG W. Research on simulation and control technology of bionic underwater robot[D]. Harbin: Harbin Engineering University, 2004: 21-32.
[6] XIA Q C, LI H, SONG N, et al. Research on flexible collapsible fluid-driven bionic robotic fish[J]. Ocean Engineering, 2023, 276: 114203.
[7] ZHONG Y, LI Z, DU R X. A novel robot fish with wire-driven active body and compliant tail[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1633-1643.
[8] ZHONG Y, SONG J L, YU H Y, et al. Toward a transform method from Lighthill fish swimming model to biomimetic robot fish[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2632-2639.
[9] MARCHESE A D, ONAL C D, RUS D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1(1): 75-87.
[10] KATZSCHMANN R K, MARCHESE A D, RUS D. Hydraulic autonomous soft robotic fish for 3D swimming[M]//Experimental Robotics. Cham: Springer International Publishing, 2015: 405-420.
[11] KATZSCHMANN R K, DELPRETO J, MACCURDY R, et al. Exploration of underwater life with an acoustically controlled soft robotic fish[J]. Science Robotics, 2018, 3(16): eaar3449.
[12] ZHU J, WHITE C, WAINWRIGHT D K, et al. Tuna robotics: a high-frequency experimental platform exploring the performance space of swimming fishes[J]. Science Robotics, 2019, 4(34): eaax4615.
[13] WANG Z, WANG L Y, WANG T, et al. Research and experiments on electromagnetic-driven multi-joint bionic fish[J]. Robotica, 2022, 40(3): 720-746.
[14] YANG W G, GUO Q H, TENG X Y, et al. A ray-inspired flexible robot fish with stable controllability actuated by photo-responsive composite hydrogels with poly(N-isopropylacrylamide) and multi-walled carbon nanotubes[J]. Sensors and Actuators A: Physical, 2024, 373: 115437.
[15] CHEN D, WANG B, XIONG Y, et al. Design and analysis of a novel bionic tensegrity robotic fish with a continuum body[J]. Biomimetics (Basel), 2024, 9(1): 19.
[16] WANG R Q, ZHANG C, ZHANG Y W, et al. Fast-swimming soft robotic fish actuated by bionic muscle[J]. Soft Robotics, 2024, 11(5): 845-856.
[17] NGUYEN D Q, HO V A. Anguilliform swimming performance of an eel-inspired soft robot[J]. Soft Robotics, 2022, 9(3): 425-439.
[18] ONAL C D, WOOD R J, RUS D. Towards printable robotics: origami-inspired planar fabrication of three-dimensional mechanisms[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, May 9-13, 2011.
[19] VANDER HOFF E, JEONG D H, LEE K J. OrigamiBot-I: a thread-actuated origami robot for manipulation and locomotion[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, IL, Sep. 14-18, 2014.
[20] SFAKIOTAKIS M, LANE D M, DAVIES J B C. Review of fish swimming modes for aquatic locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252.
[21] 曹庆明. 鱼类胸鳍推进的水动力分析与运动仿真建模[D]. 哈尔滨: 哈尔滨工程大学, 2006.
CAO Q M. Hydrodynamic characteristics and motion simulation model construction of a pectoral-fin propeller[D]. Harbin: Harbin Engineering University, 2006.
[22] 苏玉民, 黄胜, 庞永杰, 等. 仿鱼尾潜器推进系统的水动力分析[J]. 海洋工程, 2002, 20(2): 54-59.
SU Y M, HUANG S, PANG Y J, et al. Hydrodynamic analysis of submersible propulsion system imitating tuna-tail[J]. The Ocean Engineering, 2002, 20(2): 54-59.
[1] 潘锋,阮佳平,唐威,邹俊. 介电弹性体驱动的爬行-跳跃机器人研究[J]. 工程设计学报, 2025, 32(3): 316-325.
[2] 李享,李科,张明路,高春艳,李满宏. 风电塔筒用变曲率自适应爬壁机器人运动特性分析与磁吸附模块优化[J]. 工程设计学报, 2025, 32(2): 169-181.
[3] 李圣韬,张大卫,郑述国. 基于进给系统非线性静力学模型的机床加工误差预测[J]. 工程设计学报, 2025, 32(2): 208-219.
[4] 韩伟涛,温涛,刘磊,胡俊峰. 基于Kresling折纸结构的软体管道机器人设计[J]. 工程设计学报, 2025, 32(1): 72-81.
[5] 刘磊,温涛,韩伟涛,胡轩铭,胡俊峰. 快速爬行软体管道机器人的设计与性能分析[J]. 工程设计学报, 2024, 31(5): 614-622.
[6] 张淏,杨琪,连宾宾,孙涛. 基于张拉整体结构的可变形移动机器人的设计与实验研究[J]. 工程设计学报, 2024, 31(4): 438-445.
[7] 周亮,温涛,胡俊峰,周浩. 基于滚动接触的单模块多自由度柔性连续体机械臂设计[J]. 工程设计学报, 2024, 31(4): 473-482.
[8] 孙宝印,郝永平,张誉瀚,李子洋. 基于数字孪生的热电池保温棉自动缠绕系统研究[J]. 工程设计学报, 2024, 31(4): 538-546.
[9] 沈剑雄,刘迎圆,王乐勤. 基于深度学习的翼型参数化建模方法[J]. 工程设计学报, 2024, 31(3): 292-300.
[10] 蔡锦云,刘忠,王罡,赵庆斌,安宁,杜旭伟,李东良,李源周. 基于响应面法的绞磨机辅助拉尾绳装置优化设计[J]. 工程设计学报, 2024, 31(2): 178-187.
[11] 李新革,廖红玉,周敏,陈萌萌,谢良喜. 抹灰机摆动喷涂机构创新设计与分析[J]. 工程设计学报, 2024, 31(2): 248-253.
[12] 杨开科,罗俊鹏,马文静,耿远超,王德恩,袁强. 高带宽压电片变形镜的动力学仿真与优化方法研究[J]. 工程设计学报, 2024, 31(1): 130-136.
[13] 陈振中,黄冬宇,田娇,李晓科,吴子豪. 基于二阶抛物线近似的结构可靠性分析方法[J]. 工程设计学报, 2024, 31(1): 50-58.
[14] 张雷,方俊伟,苏金,蔡闯,赵云起. 基于FSRce模型的机电产品绿色概念设计方案生成方法[J]. 工程设计学报, 2024, 31(1): 10-19.
[15] 李佳,宋梅利,冯君,汤海斌. 面向激光增材制造的仿生薄壁结构抗冲击研究[J]. 工程设计学报, 2024, 31(1): 67-73.