Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (2): 169-181    DOI: 10.3785/j.issn.1006-754X.2025.04.144
机器人与机构设计     
风电塔筒用变曲率自适应爬壁机器人运动特性分析与磁吸附模块优化
李享1(),李科2,张明路1(),高春艳1,李满宏1
1.河北工业大学 机械工程学院,天津 300401
2.台山核电合营有限公司,广东 台山 529228
Motion characteristics analysis and magnetic adsorption module optimization of variable curvature adaptive wall-climbing robot for wind power tower
Xiang LI1(),Ke LI2,Minglu ZHANG1(),Chunyan GAO1,Manhong LI1
1.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
2.Taishan Nuclear Power Joint Venture Co. , Ltd. , Taishan 529228, China
 全文: PDF(6786 KB)   HTML
摘要:

针对传统爬壁机器人无法自适应风电塔筒变曲率壁面的问题,以轮式移动机构的快速稳定性和转弯灵活性为出发点,分析了轮式移动机构在变曲率壁面上运动时的姿态变化,并以此为基础设计了一种采用分体轮式移动和间隙式永磁吸附技术的新型爬壁机器人。首先,建立了多状态下的爬壁机器人运动模型,分析了机器人利用自身分体结构的姿态调整实现在变曲率壁面上移动时的自适应运动特性;然后,对爬壁机器人的磁吸附模块进行了优化,通过参数化分析得到了高吸附效率下的最优结构参数。实验结果表明,新型爬壁机器人结构设计合理,能够实现在变曲率壁面上的自适应可靠运动。所设计的爬壁机器人可为风电塔筒的维护作业提供高效、安全的解决方案,具有重要的工程应用价值。

关键词: 爬壁机器人变曲率自适应姿态调整分体轮式移动永磁吸附    
Abstract:

Aiming at the problem that traditional wall-climbing robots cannot adapt to the variable curvature wall of wind power towers, taking the fast stability and turning flexibility of the wheeled mobile mechanism as the starting point, the attitude change of the wheeled mobile mechanism moving on the variable curvature wall was analyzed, and on this basis, a new wall-climbing robot adopting split wheeled movement and gap permanent magnetic adsorption technology was designed. Firstly, a multi-state motion model for the wall-climbing robot was established, and the adaptive motion characteristics of the robot moving on the variable curvature wall by using the attitude adjustment of its own split structure were analyzed. Then, the magnetic adsorption module of the wall-climbing robot was optimized, and the optimal structural parameters under high adsorption efficiency were obtained through parametric analysis. The experiment results showed that the structural design of the new wall-climbing robot was reasonable, and it could realize the adaptive and reliable motion on the variable curvature wall. The designed wall-climbing robot can provide an efficient and safe solution for the maintenance of wind power towers, which has important engineering application value.

Key words: wall-climbing robot    variable curvature adaptive    attitude adjustment    split wheeled movement    permanent magnetic adsorption
收稿日期: 2024-05-27 出版日期: 2025-05-06
CLC:  TH 122  
基金资助: 中央引导地方科技发展资金资助项目(226Z1811G);河北省高等学校科学技术研究项目(JZX2023015)
通讯作者: 张明路     E-mail: 13315583895@163.com;zhangml@hebut.edu.cn
作者简介: 李 享(1999—),男,硕士生,从事特种机器人应用研究,E-mail: 13315583895@163.com,https://orcid.org/0009-0004-7181-6557
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李享
李科
张明路
高春艳
李满宏

引用本文:

李享,李科,张明路,高春艳,李满宏. 风电塔筒用变曲率自适应爬壁机器人运动特性分析与磁吸附模块优化[J]. 工程设计学报, 2025, 32(2): 169-181.

Xiang LI,Ke LI,Minglu ZHANG,Chunyan GAO,Manhong LI. Motion characteristics analysis and magnetic adsorption module optimization of variable curvature adaptive wall-climbing robot for wind power tower[J]. Chinese Journal of Engineering Design, 2025, 32(2): 169-181.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.144        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/169

图1  分体式柔性变曲率自适应爬壁机器人结构
图2  柔性连接模块示意图
图3  柔性铰链结构示意图
参数数值参数数值
d110d535
d220d615
d318d735
d450d812
表1  柔性铰链关键尺寸参数 (mm)
图4  作业前端快速换装示意图
图5  传统爬壁机器人的曲面姿态简图
图6  变曲率自适应爬壁机器人曲面姿态简图
图7  α—R及h1—R的关系曲线
图8  优化后变曲率自适应爬壁机器人曲面姿态简图
图9  α—R—h2关系曲面
图10  爬壁机器人原地转弯的 XOY 面投影
图11  爬壁机器人原地转弯的 XOZ 面投影
图12  α1'—θ—R关系曲面
图13  α1'—θ—h2关系曲面
图14  α1'—R—h2关系曲面
性能参数数值
剩磁感应强度/mT1?380~1?420
矫顽力/kA/m923
最大磁能/kJ/m3366~390
最高工作温度/80
表2  NdFeB-N48性能参数
图15  磁吸附模块结构示意图
图16  磁吸附模块的磁感应强度云图
图17  磁吸附模块结构参数
参数初始值参数初始值
φ1/°11h/mm28
φ2/°11d/mm105
φ3/°11t/mm5
φ4/°11
表3  磁吸附模块结构参数初始值
图18  磁吸附模块参数化分析结果
参数优化前优化后
φ1/°118
φ2/°1116
φ3/°1110
φ4/°116
h/mm2826
d/mm105105
t/mm56
Fm/N1 796.21 833.6
η/N/kg350.7403.9
表4  磁吸附模块优化结果
图19  磁吸附模块总吸附力随距壁间隙的变化曲线
图20  磁吸附模块总吸附力随壁面厚度的变化曲线
图21  变曲率自适应爬壁机器人系统
参数数值
机身尺寸/(mm×mm×mm)680×500×410
质量/kg55
最大负载/kg110
载重自重比2
可适应曲率半径/mm1?500
最大移动速度/(m/min)8
表5  爬壁机器人参数
图22  爬壁机器人负载测试现场
图23  爬壁机器人变曲率自适应运动实验
图24  爬壁机器人稳定性与灵活性测试实验
图25  爬壁机器人纵向、斜向运动时铰链处摆角的变化情况
图26  爬壁机器人转弯实验
图27  爬壁机器人转弯时铰链处摆角的变化情况
1 马吉良, 彭军, 郭艳婕, 等. 爬壁机器人研究现状及发展趋势[J]. 机械工程学报, 2023, 59(5): 11-28. doi:10.3901/jme.2023.05.011
MA J L, PENG J, GUO Y J, et al. Research status and development trend of wall climbing robot[J]. Journal of Mechanical Engineering, 2023, 59(5): 11-28.
doi: 10.3901/jme.2023.05.011
2 钟道方, 田颖, 张明路. 轮腿式爬壁机器人的永磁吸附装置设计与优化[J]. 工程设计学报, 2022, 29(1): 41-50.
ZHONG D F, TIAN Y, ZHANG M L. Design and optimization of permanent magnet adsorption device for wheel-legged wall-climbing robot[J]. Chinese Journal of Engineering Design, 2022, 29(1): 41-50.
3 NANSAI S, MOHAN R. A survey of wall climbing robots: recent advances and challenges[J]. Robotics, 2016, 5(3): 14.
4 WANG B R, LUO H H, JIN Y L, et al. Path planning for detection robot climbing on rotor blade surfaces of wind turbine based on neural network[J]. Advances in Mechanical Engineering, 2013, 5: 760126.
5 姬昭鑫, 陶友瑞, 吴淼杰. 风电塔筒爬壁机器人吸附结构优化设计及试验研究[J]. 现代制造工程, 2023(1): 35-42, 49.
JI Z X, TAO Y R, WU M J. Optimization design and experimental research on adsorption structure of wind power tower wall climbing robot[J]. Modern Manufacturing Engineering, 2023(1): 35-42, 49.
6 陈彦臻, 胡以怀. 船体清洗机器人的开发现状与展望[J]. 船舶工程, 2017, 39(10): 62-69.
CHEN Y Z, HU Y H. Development status and prospect of ship hull cleaning robot[J]. Ship Engineering, 2017, 39(10): 62-69.
7 杨怀林, 刘春华, 陈晓辉, 等. 大型球罐壁面除漆机器人设计与实验研究[J]. 机械传动, 2024, 48(1): 151-158.
YANG H L, LIU C H, CHEN X H, et al. Design and experimental study of a large spherical tank wall paint removal robot[J]. Journal of Mechanical Transmission, 2024, 48(1): 151-158.
8 冯传智, 罗雨, 许耀波, 等. 管道全位置焊接机器人结构设计与运动学分析[J]. 机电工程, 2024, 41(8): 1489-1499.
FENG C Z, LUO Y, XU Y B, et al. Structural design and kinematics analysis of pipeline all-position welding robot[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(8): 1489-1499.
9 YANG P, SUN L Y, ZHANG M L. Design and analysis of a passive adaptive wall-climbing robot on variable curvature ship facades[J]. Applied Ocean Research, 2024, 143: 103879.
10 GO T, OSAWA T, NAKAMURA T. Proposed locomotion strategy for a traveling-wave-type omnidirectional wall-climbing robot for spherical surfaces[C]//2015 IEEE International Conference on Robotics and Biomimetics. Zhuhai, Dec. 6-9, 2015.
11 JIANG Z, MA Z, JU Z J, et al. Design and analysis of a wall-climbing robot for passive adaptive movement on variable-curvature metal facades[J]. Journal of Field Robotics, 2023, 40(1): 94-109.
12 崔晓森. 风电塔筒运维用四足伸缩式爬壁机器人设计与分析研究[D]. 沈阳: 沈阳工业大学, 2023.
CUI X S. Design and analysis of a quadruped telescopic wall climbing robot for the operation and maintenance of wind power tower[D]. Shenyang: Shenyang University of Technology, 2023.
13 崔宗伟, 孙振国, 陈强, 等. 两端吸附式焊缝修形爬壁机器人研制[J]. 机器人, 2016, 38(1): 122-128.
CUI Z W, SUN Z G, CHEN Q, et al. Wall climbing robot based on two-end adsorption for weld seam amending[J]. Robot, 2016, 38(1): 122-128.
14 SEO T, SITTI M. Tank-like module-based climbing robot using passive compliant joints[J]. IEEE/ASME Transactions on Mechatronics, 2012, 18(1): 397-408.
15 SEO T, SITTI M. Under-actuated tank-like climbing robot with various transitioning capabilities[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, May 9-13, 2011.
16 SONG Y F, YANG Z Y, CHANG Y, et al. Design and analysis of a wall-climbing robot with passive compliant mechanisms to adapt variable curvatures walls[J]. Robotica, 2024, 42(4): 962-976.
17 ZHANG D, LI Z H, JIA P, et al. Optimization design and trajectory error compensation of a facade-adaptive wall-climbing robot[J]. Symmetry, 2023, 15(2): 255.
18 韩强. 风电塔筒爬升装置及叶片与塔筒检测管理系统的开发[D]. 北京: 华北电力大学, 2017.
HAN Q. Development on the wind turbine tower climbing device and blades with towers detection management system[D]. Beijing: North China Electric Power University, 2017.
19 张栋, 杨培, 黄哲轩, 等. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
ZHANG D, YANG P, HUANG Z X, et al. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
20 杨培, 张明路, 孙凌宇. 爬壁机器人磁吸附模块设计分析与结构参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
YANG P, ZHANG M L, SUN L Y. Design analysis and structural parameter optimization for magnetic adsorption module of wall-climbing robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 592-602.
[1] 覃超,唐东林,游东潘,丁超,饶胜,何媛媛. 基于改进RTAB-Map算法的爬壁机器人导航研究[J]. 工程设计学报, 2025, 32(1): 32-41.
[2] 杨培,张明路,孙凌宇. 爬壁机器人磁吸附模块设计分析与结构参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
[3] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[4] 钟道方, 田颖, 张明路. 轮腿式爬壁机器人的永磁吸附装置设计与优化[J]. 工程设计学报, 2022, 29(1): 41-50.
[5] 唐东林, 龙再勇, 汤炎锦, 潘峰, 游传坤. 储罐检测爬壁机器人全遍历路径规划[J]. 工程设计学报, 2020, 27(2): 162-171.
[6] 唐东林, 李茂扬, 丁超, 魏子兵, 胡琳, 袁波. 轮式爬壁机器人转向稳定性研究[J]. 工程设计学报, 2019, 26(2): 153-161.
[7] 唐东林, 袁波, 胡琳, 李茂扬, 魏子兵. 储罐探伤爬壁机器人全遍历路径规划方法[J]. 工程设计学报, 2018, 25(3): 253-261.