Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (1): 72-81    DOI: 10.3785/j.issn.1006-754X.2025.04.101
机器人与机构设计     
基于Kresling折纸结构的软体管道机器人设计
韩伟涛(),温涛,刘磊,胡俊峰()
江西理工大学 机电工程学院,江西 赣州 341000
Design of soft pipeline robot based on Kresling origami structure
Weitao HAN(),Tao WEN,Lei LIU,Junfeng HU()
School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
 全文: PDF(5906 KB)   HTML
摘要:

针对传统刚性管道机器人体积大、对非结构化环境适应性差等缺陷,设计了一种基于Kresling折纸结构的软体管道机器人。受蠕动爬行方式启发,软体管道机器人以塔簧-Kresling折纸结构作为伸缩结构,以硅胶摩擦带作为摩擦结构。该机器人的最大负载为自身质量的5.9倍,最大水平爬行速度为25.14 mm/s,在垂直管道中的爬行速度可达9.96 mm/s。随后,分析了伸缩结构类型,Kresling折纸结构的收缩长度、材质与角度参数以及摩擦力等因素对机器人爬行速度的影响。最后,制作了机器人样机并通过实验展示了机器人在不同内径、倾斜角度、形状的管道中爬行的可行性。结果表明,所设计的机器人具有良好的适应性和灵活性,能利用Kresling折纸结构的柔顺性来适应复杂管道环境,这为管道探测、检修等应用提供了新颖的方式。

关键词: Kresling折纸结构软体管道机器人伸缩结构摩擦结构柔顺性    
Abstract:

Aiming at the limitations of traditional rigid pipeline robots such as large volume and poor adaptability to unstructured environments, a soft pipeline robot based on Kresling origami structure is designed. Inspired by peristaltic crawling mode, the soft pipeline robot employed a tower spring-Kresling origami structure as the telescopic structure and silicone friction belts as the friction structure. The robot achieved a maximum payload of 5.9 times its own mass, a horizontal crawling speed of 25.14 mm/s and a crawling speed of 9.96 mm/s in vertical pipelines. Then, the effects of the telescopic structure type, the shrinkage length, material and angle parameters of Kresling origami structure, and the friction force on the robot's crawling speed were analyzed. Finally, the robot prototype was fabricated and the feasibility of the robot crawling in pipelines with different inner diameters, inclination angles and shapes was demonstrated through experiments. The results showed that the designed robot had good adaptability and flexibility, and could use the compliance of Kresling origami structure to adapt to the complex pipeline environment, which provided a novel way for pipeline detection, maintenance and other applications.

Key words: Kresling origami structure    soft pipeline robot    telescopic structure    friction structure    compliance
收稿日期: 2024-01-09 出版日期: 2025-03-04
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(52165011);江西省自然科学基金资助项目(20212BAB204028);江西省自然科学基金重点项目(联合资助)(20202ACBL204009)
通讯作者: 胡俊峰     E-mail: 1300750231@qq.com;hjfsuper@126.com
作者简介: 韩伟涛(1996—),男,硕士生,从事软体机器人研究,E-mail: 1300750231@qq.com,https://orcid.org/0009-0008-9519-3875
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩伟涛
温涛
刘磊
胡俊峰

引用本文:

韩伟涛,温涛,刘磊,胡俊峰. 基于Kresling折纸结构的软体管道机器人设计[J]. 工程设计学报, 2025, 32(1): 72-81.

Weitao HAN,Tao WEN,Lei LIU,Junfeng HU. Design of soft pipeline robot based on Kresling origami structure[J]. Chinese Journal of Engineering Design, 2025, 32(1): 72-81.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.101        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I1/72

图1  软体管道机器人运动原理
图2  塔簧-Kresling折纸结构
图3  柔性摩擦带模型
图4  机器人爬行过程中的摩擦原理
图5  机器人爬行过程中摩擦带受力分析
图6  机器人整体结构及圆盘结构
图7  机器人样机的控制系统及其爬行效果
图8  不同伸缩结构下机器人的爬行速度对比
图9  不同电机工作参数下机器人的爬行速度对比
图10  不同Kresling折纸结构材质下机器人的爬行速度对比
图11  不同Kresling折纸结构角度参数下机器人的爬行速度对比
图12  塔簧-Kresling折纸结构伸展速度测量实验结果
图13  摩擦带的摩擦力测量装置及结果
图14  摩擦带带型对机器人爬行距离的影响
图15  摩擦带斜纹角度对机器人爬行距离的影响
图16  机器人负载能力测试实验结果
图17  不同内径水平管道中机器人的爬行效果
图18  不同内径水平管道中机器人的爬行距离对比
图19  不同倾斜角度管道中机器人的爬行效果
图20  不同倾斜角度管道中机器人的爬行速度对比
图21  不同形状管道中机器人的爬行效果
图22  弯曲管道中机器人的爬行效果
1 彭善碧, 赵菂雯, 卢泓方, 等. 国外石油天然气行业非金属管道检测技术[J]. 中国安全生产科学技术, 2022, 18(12): 49-57.
PENG S B, ZHAO D W, LU H F, et al. Detection technologies of non-metallic pipelines in oil and gas industry at abroad[J]. Journal of Safety Science and Technology, 2022, 18(12): 49-57.
2 蒋程. 具有织物皮肤的仿蠕虫气动式管道机器人设计及应用研究[D]. 上海: 东华大学, 2021. doi:10.1177/00405175211016561
JIANG C. Design and application of worm-inspired pnuematic pipe robot with fabric skin[D]. Shanghai: Donghua University, 2021.
doi: 10.1177/00405175211016561
3 廖礼江. 圆形管道中机器人控制策略研究及管道变形率的测量[D]. 广州: 华南理工大学, 2012.
LIAO L J. The control law of the wheel robot and the measurement of pipeline deformation[D]. Guangzhou: South China University of Technology, 2012.
4 YANG Y X, CHEN X M, HAN Y H. Dadu-RBD: robot rigid body dynamics accelerator with multifunctional pipelines[C]//Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture. Toronto, Oct. 28-Nov. 1, 2023.
5 JANG H, KIM T Y, LEE Y C, et al. A review: technological trends and development direction of pipeline robot systems[J]. Journal of Intelligent & Robotic Systems, 2022, 105(3): 59.
6 KLANČAR G, ZDEŠAR A, BLAŽIČ S, et al. Wheeled mobile robotics: from fundamentals towards autonomous systems[M]. Oxford: Butterworth-Heinemann, 2017.
7 BRUZZONE L, NODEHI S E, FANGHELLA P. Tracked locomotion systems for ground mobile robots: a review[J]. Machines, 2022, 10(8): 648.
8 ZHANG A N, WANG T H, TRUBY R L, et al. Machine learning best practices for soft robot proprioception[C]//2023 IEEE/RSJ International Conference on Intelligent Robots and Systems. Detroit, MI, Oct. 1-5, 2023.
9 冯慧娟, 杨名远, 姚国强, 等. 折纸机器人[J]. 中国科学: 技术科学, 2018, 48(12): 1259-1274. doi:10.1360/n092018-00213
FENG H J, YANG M Y, YAO G Q, et al. Origami robots[J]. Scientia Sinica (Technologica), 2018, 48(12): 1259-1274.
doi: 10.1360/n092018-00213
10 TURNER N, GOODWINE B, SEN M. A review of origami applications in mechanical engineering[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(14): 2345-2362.
11 LIU J B, MA G Y, MA Z, et al. Origami-inspired soft-rigid hybrid contraction actuator and its application in pipe-crawling robot[J]. Smart Material Structures, 2023, 32(6): 065015.
12 CAI J G, DENG X W, ZHOU Y, et al. Bistable behavior of the cylindrical origami structure with Kresling pattern[J]. Journal of Mechanical Design, 2015, 137(6): 061406.
13 KAUFMANN J, BHOVAD P, LI S Y. Harnessing the multistability of Kresling origami for reconfigurable articulation in soft robotic arms[J]. Soft Robotics, 2022, 9(2): 212-223.
14 ZE Q J, WU S, NISHIKAWA J, et al. Soft robotic origami crawler[J]. Science Advances, 2022, 8(13): eabm7834.
15 BELKE C H, PAIK J. Mori: a modular origami robot[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 2153-2164.
16 LIU X M, SONG M Z, FANG Y H, et al. Worm-inspired soft robots enable adaptable pipeline and tunnel inspection[J]. Advanced Intelligent Systems, 2022, 4(1): 2100128.
17 LIN Y, XU Y X, JUANG J Y. Single-actuator soft robot for in-pipe crawling[J]. Soft Robotics, 2023, 10(1): 174-186.
18 CIANCHETTI M, CALISTI M, MARGHERI L, et al. Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot[J]. Bioinspiration & Biomimetics, 2015, 10(3): 035003.
19 SADEGHI A, DEL DOTTORE E, MONDINI A, et al. Passive morphological adaptation for obstacle avoidance in a self-growing robot produced by additive manufacturing[J]. Soft Robotics, 2020, 7(1): 85-94.
20 FORTERRE Y, SKOTHEIM J M, DUMAIS J, et al. How the Venus flytrap snaps[J]. Nature, 2005, 433(7024): 421-425.
21 张铁中, 杨丽, 陈兵旗, 等. 农业机器人技术研究进展[J]. 中国科学: 信息科学, 2010, 40(): 71-87.
ZHANG T Z, YANG L, CHEN B Q, et al. Research progress of agricultural robot technology[J]. Scientia Sinica (Informationis), 2010, 40(): 71-87.
22 LOONEY T C, SAVARD N M, TERAN G T, et al. Air-releasable soft robots for explosive ordnance disposal[C]//2022 IEEE 5th International Conference on Soft Robotics. Edinburgh, Apr. 4-8, 2022.
23 BOGUE R. The growing use of robots by the aerospace industry[J]. Industrial Robot, 2018, 45(6): 705-709.
[1] 刘磊,温涛,韩伟涛,胡轩铭,胡俊峰. 快速爬行软体管道机器人的设计与性能分析[J]. 工程设计学报, 2024, 31(5): 614-622.