Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (2): 199-207    DOI: 10.3785/j.issn.1006-754X.2025.04.154
机器人与机构设计     
基于压电陶瓷驱动的二维精密定位平台设计及分析
杜健1,2(),祝锡晶1,2(),李婧1,2
1.中北大学 机械工程学院,山西 太原 030051
2.先进制造技术山西省重点实验室,山西 太原 030051
Design and analysis of two-dimensional precision positioning platform based on piezoelectric ceramic drive
Jian DU1,2(),Xijing ZHU1,2(),Jing LI1,2
1.School of Mechanical Engineering, North University of China, Taiyuan 030051, China
2.Shanxi Key Laboratory of Advanced Manufacturing Technology, Taiyuan 030051, China
 全文: PDF(5820 KB)   HTML
摘要:

为解决柔性精密定位平台位移放大倍数小、输出刚度低以及运动耦合位移过高的问题,提出了一种基于压电陶瓷驱动的二维精密定位平台。首先,利用模块法、弹性梁理论及柔度矩阵法对精密定位平台进行了静力学建模,并利用拉格朗日方程对其进行了动力学建模。然后,采用ANSYS Workbench软件对精密定位平台的位移放大倍数、输出刚度、耦合位移和固有频率进行了有限元仿真。最后,通过搭建精密定位平台实验装置来测试其性能参数,并与有限元仿真结果和理论计算结果进行了对比分析。仿真与实验结果验证了精密定位平台静力学模型及动力学模型的准确性,表明所设计的精密定位平台具有位移放大倍数大、输出刚度高及解耦性能强的优点。研究结果为柔性精密定位平台实现大行程位移输出和良好的解耦能力提供了一定的理论指导。

关键词: 精密定位平台有限元仿真固有频率输出刚度    
Abstract:

In order to solve the problems of small displacement magnification, low output stiffness and excessive motion coupling displacement of flexible precision positioning platform, a two-dimensional precision positioning platform based on piezoelectric ceramic drive is proposed. Firstly, the statics modeling for the precision positioning platform was carried out by using the module method, elastic beam theory and flexibility matrix method, and the dynamics modeling was conducted by using the Lagrange equation. Then, the finite element simulation on the displacement magnification, output stiffness, coupling displacement and natural frequency of the precision positioning platform was carried out by ANSYS Workbench software. Finally, the performance parameters of the precision positioning platform were tested by constructing an experimental device, and comparative analyses were conducted with finite element simulation results and theoretical calculation results. The simulation and experimental results verified the accuracy of the statics model and dynamics model of the precision positioning platform, which showed that the designed precision positioning platform had advantages of large displacement magnification, high output stiffness and strong decoupling performance. The research results provide some theoretical guidance for the flexible precision positioning platform to realize large stroke displacement output and excellent decoupling capability.

Key words: precision positioning platform    finite element simulation    natural frequency    output stiffness
收稿日期: 2024-07-05 出版日期: 2025-05-06
CLC:  TH 112  
基金资助: 国家自然科学基金面上项目(51975540)
通讯作者: 祝锡晶     E-mail: 571330085@qq.com;zxj161501@163.com
作者简介: 杜 健(1999—),男,硕士生,从事精密机械、纳米定位技术研究,E-mail: 571330085@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杜健
祝锡晶
李婧

引用本文:

杜健,祝锡晶,李婧. 基于压电陶瓷驱动的二维精密定位平台设计及分析[J]. 工程设计学报, 2025, 32(2): 199-207.

Jian DU,Xijing ZHU,Jing LI. Design and analysis of two-dimensional precision positioning platform based on piezoelectric ceramic drive[J]. Chinese Journal of Engineering Design, 2025, 32(2): 199-207.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.154        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/199

图1  不同桥式放大机构对比
图2  精密定位平台的运动导向机构
图3  二维精密定位平台整体结构1—工作平台;2—预紧螺纹孔;3—双桥臂桥式放大机构;4—定位孔;5—双级平行四边形机构;6—复合平行四边形机构。
图4  双桥臂桥式放大机构尺寸参数
图5  运动导向机构和柔性梁的尺寸参数
图6  精密定位平台质量分布示意
参数数值参数数值
l14.00l?a253.80
l224.00h6.50
l325.00t0.50
l455.00ta0.60
l521.80t010.00
l663.00w2.00
la126.52b20.00
表1  精密定位平台尺寸参数 (mm)
图7  精密定位平台沿 y 方向的运动位移
图8  精密定位平台输入力与输出位移的关系
图9  精密定位平台的前两阶模态
图10  精密定位平台样机
图11  精密定位平台实验装置
图12  不同驱动电压下精密定位平台的输入、输出位移
图13  精密定位平台的一阶固有频率
对比项

位移放大

倍数

输出刚度/(N/mm)一阶固有频率/Hz
理论计算值11.2717283.28
仿真值10.5915790.27
实测值9.78167102.10
表2  精密定位平台的性能参数对比
1 XU Q S, TAN K K. Advanced control of piezoelectric micro-/nano-positioning systems[M]. Cham: Springer, 2015.
2 高福天. 桥式杠杆放大机构的设计、优化及控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
GAO F T. Design, optimization and control of abridge-lever-type amplifier[D]. Harbin: Harbin Institute of Technology, 2019.
3 GALLEGO J A, HERDER J. Classification for literature on compliant mechanisms: a design methodology based approach[C]//ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego, California, Aug. 30-Sep. 2, 2009.
4 李天翼. 二自由度解耦大行程微纳定位平台设计[D]. 杭州: 杭州电子科技大学, 2019.
LI T Y. Design of two degree of freedom decoupled micro-nano positioning stage with large workspace[D]. Hangzhou: Hangzhou Dianzi University, 2019.
5 TANG H, LI Y M. Design, analysis, and test of a novel 2-DOF nanopositioning system driven by dual mode[J]. IEEE Transactions on Robotics, 2013, 29(3): 650-662.
6 LI Y M, XU Q S. Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator[J]. IEEE Transactions on Robotics, 2009, 25(3): 645-657.
7 LING M X, CAO J Y, JIANG Z, et al. Optimal design of a piezo-actuated 2-DOF millimeter-range monolithic flexure mechanism with a pseudo-static model[J]. Mechanical Systems and Signal Processing, 2019, 115: 120-131.
8 张宪民, 朱本亮, 李海, 等. 柔顺精密定位与操作机构研究进展[J]. 机械工程学报, 2023, 59(19): 24-43. doi:10.3901/jme.2023.19.024
ZHANG X M, ZHU B L, LI H, et al. Recent advances in compliant precision positioning and manipulating mechanisms[J]. Journal of Mechanical Engineering, 2023, 59(19): 24-43.
doi: 10.3901/jme.2023.19.024
9 LING M X, WANG J L, WU M X, et al. Design and modeling of an improved bridge-type compliant mechanism with its application for hydraulic piezo-valves[J]. Sensors and Actuators A: Physical, 2021, 324: 112687.
10 CHOI K B, LEE J J, KIM G H, et al. Amplification ratio analysis of a bridge-type mechanical amplification mechanism based on a fully compliant model[J]. Mechanism and Machine Theory, 2018, 121: 355-372.
11 卢倩, 黄卫清, 孙梦馨. 基于柔度比优化设计杠杆式柔性铰链放大机构[J]. 光学 精密工程, 2016, 24(1): 102-111. doi:10.3788/ope.20162401.0102
LU Q, HUANG W Q, SUN M X. Optimization design of amplification mechanism for level flexure hinge based on compliance ratio[J]. Optics and Precision Engineering, 2016, 24(1): 102-111.
doi: 10.3788/ope.20162401.0102
12 WU H T, LAI L J, ZHANG L Q, et al. A novel compliant XY micro-positioning stage using bridge-type displacement amplifier embedded with Scott-Russell mechanism[J]. Precision Engineering, 2022, 73: 284-295.
13 QIN Y D, SHIRINZADEH B, ZHANG D W, et al. Design and kinematics modeling of a novel 3-DOF monolithic manipulator featuring improved Scott-Russell mechanisms[J]. Journal of Mechanical Design, 2013, 135(10): 101004.
14 PAN B, ZHAO H Z, ZHAO C X, et al. Nonlinear characteristics of compliant bridge-type displacement amplification mechanisms[J]. Precision Engineering, 2019, 60: 246-256.
15 KOSEKI Y, TANIKAWA T, KOYACHI N, et al. Kinematic analysis of a translational 3-DOF micro-parallel mechanism using the matrix method[J]. Advanced Robotics, 2002, 16(3): 251-264.
16 赵建国. 基于卡氏第二定理与弹性梁理论的二维柔顺定位平台力学性能研究[D]. 上海: 上海大学, 2020.
ZHAO J G. Research on mechanical properties of Castigliano's second theorem and elastic beam theory based 2-DOF compliant positioning stage[D]. Shanghai: Shanghai University, 2020.
[1] 徐智皓,陆晓伟,谢雨欣,赖磊捷. 音圈电机驱动的三自由度大行程柔性偏摆台设计与分析[J]. 工程设计学报, 2025, 32(1): 82-91.
[2] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[3] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[4] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[5] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[6] 独亚平,赵春花,郭嘉辉,周川,张立强. 柔顺停歇机构伪刚体模型的运动学和动力学分析[J]. 工程设计学报, 2022, 29(2): 202-211.
[7] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[8] 李阳, 聂羽飞. 钠燃烧试验厂房隔热密封门的设计与分析[J]. 工程设计学报, 2022, 29(1): 115-122.
[9] 魏建宝, 李松梅, 徐雨田. 三叉式-球笼式双联万向联轴器的扭转振动特性分析[J]. 工程设计学报, 2021, 28(4): 458-465.
[10] 严国平, 周俊宏, 钟飞, 李哲, 周宏娣, 彭震奥. 纸塑复合袋磁力压紧纠偏装置设计及优化[J]. 工程设计学报, 2021, 28(3): 367-373.
[11] 刘永江, 彭宣霖, 唐雄辉, 李华, 齐紫梅. 轴流散热风机共振失效分析与优化设计[J]. 工程设计学报, 2021, 28(2): 203-209.
[12] 李玄, 周双武, 路松, 丁冰晓. 基于二级杠杆机构的二自由度微定位平台设计与分析[J]. 工程设计学报, 2020, 27(4): 533-540.
[13] 李响, 王阳, 童冠, 陈波文, 何彬. 四边简支新型类方形蜂窝夹层结构振动特性研究[J]. 工程设计学报, 2018, 25(6): 725-734.
[14] 何育民, 程婉莹, 朱宝慧, 徐欢欢. 矩形梁裂纹柔度测量方法研究[J]. 工程设计学报, 2017, 24(6): 618-623.
[15] 夏 磊,江浩斌. 基于刚度匹配的汽车保险杠防撞梁改进设计[J]. 工程设计学报, 2015, 22(1): 84-88.