机器人与机构设计 |
|
|
|
|
基于压电陶瓷驱动的二维精密定位平台设计及分析 |
杜健1,2( ),祝锡晶1,2( ),李婧1,2 |
1.中北大学 机械工程学院,山西 太原 030051 2.先进制造技术山西省重点实验室,山西 太原 030051 |
|
Design and analysis of two-dimensional precision positioning platform based on piezoelectric ceramic drive |
Jian DU1,2( ),Xijing ZHU1,2( ),Jing LI1,2 |
1.School of Mechanical Engineering, North University of China, Taiyuan 030051, China 2.Shanxi Key Laboratory of Advanced Manufacturing Technology, Taiyuan 030051, China |
1 |
XU Q S, TAN K K. Advanced control of piezoelectric micro-/nano-positioning systems[M]. Cham: Springer, 2015.
|
2 |
高福天. 桥式杠杆放大机构的设计、优化及控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. GAO F T. Design, optimization and control of abridge-lever-type amplifier[D]. Harbin: Harbin Institute of Technology, 2019.
|
3 |
GALLEGO J A, HERDER J. Classification for literature on compliant mechanisms: a design methodology based approach[C]//ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego, California, Aug. 30-Sep. 2, 2009.
|
4 |
李天翼. 二自由度解耦大行程微纳定位平台设计[D]. 杭州: 杭州电子科技大学, 2019. LI T Y. Design of two degree of freedom decoupled micro-nano positioning stage with large workspace[D]. Hangzhou: Hangzhou Dianzi University, 2019.
|
5 |
TANG H, LI Y M. Design, analysis, and test of a novel 2-DOF nanopositioning system driven by dual mode[J]. IEEE Transactions on Robotics, 2013, 29(3): 650-662.
|
6 |
LI Y M, XU Q S. Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator[J]. IEEE Transactions on Robotics, 2009, 25(3): 645-657.
|
7 |
LING M X, CAO J Y, JIANG Z, et al. Optimal design of a piezo-actuated 2-DOF millimeter-range monolithic flexure mechanism with a pseudo-static model[J]. Mechanical Systems and Signal Processing, 2019, 115: 120-131.
|
8 |
张宪民, 朱本亮, 李海, 等. 柔顺精密定位与操作机构研究进展[J]. 机械工程学报, 2023, 59(19): 24-43. doi:10.3901/jme.2023.19.024 ZHANG X M, ZHU B L, LI H, et al. Recent advances in compliant precision positioning and manipulating mechanisms[J]. Journal of Mechanical Engineering, 2023, 59(19): 24-43.
doi: 10.3901/jme.2023.19.024
|
9 |
LING M X, WANG J L, WU M X, et al. Design and modeling of an improved bridge-type compliant mechanism with its application for hydraulic piezo-valves[J]. Sensors and Actuators A: Physical, 2021, 324: 112687.
|
10 |
CHOI K B, LEE J J, KIM G H, et al. Amplification ratio analysis of a bridge-type mechanical amplification mechanism based on a fully compliant model[J]. Mechanism and Machine Theory, 2018, 121: 355-372.
|
11 |
卢倩, 黄卫清, 孙梦馨. 基于柔度比优化设计杠杆式柔性铰链放大机构[J]. 光学 精密工程, 2016, 24(1): 102-111. doi:10.3788/ope.20162401.0102 LU Q, HUANG W Q, SUN M X. Optimization design of amplification mechanism for level flexure hinge based on compliance ratio[J]. Optics and Precision Engineering, 2016, 24(1): 102-111.
doi: 10.3788/ope.20162401.0102
|
12 |
WU H T, LAI L J, ZHANG L Q, et al. A novel compliant XY micro-positioning stage using bridge-type displacement amplifier embedded with Scott-Russell mechanism[J]. Precision Engineering, 2022, 73: 284-295.
|
13 |
QIN Y D, SHIRINZADEH B, ZHANG D W, et al. Design and kinematics modeling of a novel 3-DOF monolithic manipulator featuring improved Scott-Russell mechanisms[J]. Journal of Mechanical Design, 2013, 135(10): 101004.
|
14 |
PAN B, ZHAO H Z, ZHAO C X, et al. Nonlinear characteristics of compliant bridge-type displacement amplification mechanisms[J]. Precision Engineering, 2019, 60: 246-256.
|
15 |
KOSEKI Y, TANIKAWA T, KOYACHI N, et al. Kinematic analysis of a translational 3-DOF micro-parallel mechanism using the matrix method[J]. Advanced Robotics, 2002, 16(3): 251-264.
|
16 |
赵建国. 基于卡氏第二定理与弹性梁理论的二维柔顺定位平台力学性能研究[D]. 上海: 上海大学, 2020. ZHAO J G. Research on mechanical properties of Castigliano's second theorem and elastic beam theory based 2-DOF compliant positioning stage[D]. Shanghai: Shanghai University, 2020.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|