Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (2): 191-198    DOI: 10.3785/j.issn.1006-754X.2025.04.149
机器人与机构设计     
空间并联多稳态机构的设计与分析
李保坤1,2(),李琳1(),赵伟1,陶珍钰1
1.安徽理工大学 机电工程学院,安徽 淮南 232001
2.广西制造系统与先进制造技术重点实验室,广西 桂林 541004
Design and analysis of spatial parallel multi-stable mechanism
Baokun LI1,2(),Lin LI1(),Wei ZHAO1,Zhenyu TAO1
1.School of Mechanical and Electrical Engineering, Anhui University of Technology, Huainan 232001, China
2.Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, Guilin 541004, China
 全文: PDF(2799 KB)   HTML
摘要:

空间并联多稳态机构(spatial parallel multi-stable mechanism, SPMM)指在外力作用下能切换为不同稳定平衡状态的机构,是传统空间刚性并联机构与柔顺机构的结合,更稳定并能节约能量。采用刚体置换方法创新设计了具有8种稳态位形的六自由度3-PSPS SPMM,通过移动3个分支能实现机构8种稳态位形之间的切换。首先,分析了SPMM结构,对机构进行静力学分析,建立了能量-运动学微分方程来确定机构稳态,并采用MATLAB软件得到了机构运动过程的能量图;其次,利用基于Lagrange-Dirichlet原理的能量法,确定了机构的8种稳态位形,分析了运动过程中稳态位形之间的切换路径;最后,采用3D打印的SPMM模型,进行了实验验证。所研究的SPMM能实现稳态位形可控,能广泛应用于运动平台和缓冲机构的设计中。

关键词: 柔顺机构空间并联多稳态机构稳态能量-运动学微分方程方程    
Abstract:

Spatial parallel multi-stable mechanism (SPMM) is a mechanism that can switch to different stable equilibrium states under external forces. It is a combination of traditional spatial rigid parallel mechanisms and compliant mechanisms, which is more stable and can save energy. The 6-DOF 3-PSPS SPMM with eight kinds of steady-state configurations was innovatively designed by using the rigid body substitution method. By moving three branches, eight kinds of steady-state configurations of the mechanism could be switched. Firstly, the SPMM structure was analyzed, the mechanism statics analysis was carried out, the energy-kinematic differential equation was established to determine the steady-state of the mechanism, and the energy diagram of the mechanism's motion process was obtained by MATLAB software. Secondly, using the energy method based on Lagrange-Dirichlet principle, eight steady-state configurations of the mechanism were determined, and the switching paths between the steady-state configurations were analyzed. Finally, the 3D printed SPMM model was used for experimental verification. The SPMM can realize steady-state configuration control and can be widely used in the design of motion platform and buffer mechanism.

Key words: flexible mechanism    spatial parallel multi-stable mechanism    steady-state    energy-kinematic differential equation
收稿日期: 2024-06-27 出版日期: 2025-05-06
CLC:  TH 112  
基金资助: 国家自然科学基金资助项目(U21A20122);广西制造系统与先进制造技术重点实验室开放基金资助项目(23354S013);安徽理工大学专项培育项目(YZ2023H2A003)
通讯作者: 李琳     E-mail: libkmail@126.com;1786101759@qq.com
作者简介: 李保坤(1982—),男,教授,博士,从事机构学和机器人等研究,E-mail: libkmail@126.com, http://orcid.org/0000-0001-5413-4061
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李保坤
李琳
赵伟
陶珍钰

引用本文:

李保坤,李琳,赵伟,陶珍钰. 空间并联多稳态机构的设计与分析[J]. 工程设计学报, 2025, 32(2): 191-198.

Baokun LI,Lin LI,Wei ZHAO,Zhenyu TAO. Design and analysis of spatial parallel multi-stable mechanism[J]. Chinese Journal of Engineering Design, 2025, 32(2): 191-198.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.149        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/191

图1  SPMM结构
图2  仅有1个分支移动时SPMM势能变化曲线
图3  机构运动过程中 θ2 变化曲线
图4  分支2和分支3同时移动、分支1在初始位置时SPMM势能变化
图5  分支2和分支3同时移动、 d1=0时SPMM稳态位形
图6  分支2和分支3同时移动、分支1在不同位置时SPMM势能变化曲面
图7  分支2和分支3同时移动、 d1=306.767 mm时SPMM稳态位形
图8  仅有1个分支移动时SPMM稳态位形切换路径
图9  2个分支同时移动时SPMM稳态位形切换路径
图10  SPMM 3D模型部分稳态位形
图11  3个分支同时运动时机构的锁定状态
1 任军, 何文浩. 3-PSS柔性并联微操作机器人运动学及工作空间分析[J]. 机械设计与制造, 2022(12): 58-63.
REN J, HE W H. Kinematics and workspace analysis of 3-PSS flexible parallel micromanipulator[J]. Machinery Design & Manufacture, 2022(12): 58-63.
2 HOPKINS J B, CULPEPPER M L. Synthesis of precision serial flexure systems using freedom and constraint topologies (FACT)[J]. Precision Engineering, 2011, 35(4): 638-649.
3 HOPKINS J B, CULPEPPER M L. Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT). Part Ⅱ: Practice[J]. Precision Engineering, 2010, 34(2): 271-278.
4 HUISJES A E, VAN DER WIJK V. Compliant manipulator design method (COMAD) for the type synthesis of all serial and parallel multi-DoF compliant mechanisms, with example of a Schönflies motion generator[J]. Mechanism and Machine Theory, 2023, 186: 105342.
5 HOPKINS J B, PANAS R M. Design of flexure-based precision transmission mechanisms using screw theory[J]. Precision Engineering, 2013, 37(2): 299-307.
6 HOWELL L L, MAGLEBY SP, OLSEN B M, et al. Handbook of compliant mechanisms[M]. Hoboken: John Wiley & Sons, Inc., 2013.
7 PHAM H T, WANG D G. A constant-force bistable mechanism for force regulation and overload protection[J]. Mechanism and Machine Theory, 2011, 46(7): 899-909.
8 HAGHPANAH B, SALARI-SHARIF L, POURRAJAB P, et al. Multistable shape-reconfigurable architected materials[J]. Advanced Materials, 2016, 28(36): 7915-7920.
9 ANDÒ B, BAGLIO S, BULSARA A R, et al. A bistable buckled beam based approach for vibrational energy harvesting[J]. Sensors and Actuators A: Physical, 2014, 211: 153-161.
10 KIM G W, KIM J. Compliant bistable mechanism for low frequency vibration energy harvester inspired by auditory hair bundle structures[J]. Smart Material Structures, 2013, 22(1): 014005.
11 ZHAO J, JIA J Y, WANG H X, et al. A novel threshold accelerometer with postbuckling structures for airbag restraint systems[J]. IEEE Sensors Journal, 2007, 7(8): 1102-1109.
12 TSAY J, CHANG H A, SUNG C K. Design and experiments of fully compliant bistable micromechanisms[J]. Mechanism and Machine Theory, 2005, 40(1): 17-31.
13 JENSEN B D, HOWELL L L, SALMON L G. Design of two-link, in-plane, bistable compliant micro-mechanisms[J]. Journal of Mechanical Design, 1999, 121(3): 416-423.
14 CHEN G M, ZHANG S Y, LI G. Multistable behaviors of compliant sarrus mechanisms[J]. Journal of Mechanisms and Robotics, 2013, 5(2): 021005.
15 SHCHELKUNOV E B, SHCHELKUNOVA M E, RYABOV S A, et al. Parallel mechanisms with flexible couplings[J]. Russian Engineering Research, 2021, 41(7): 593-597.
16 LAMBERT P, CRUZ L DA, BERGELES C. Mobility of overconstrained parallel mechanisms with reconfigurable end-effectors[J]. Mechanism and Machine Theory, 2022, 171: 104722.
17 吴孟丽, 陈莫, 李德祚, 等. 复合驱动并联机构的动力学建模与仿真分析[J]. 机械设计, 2024, 41(3): 112-121.
WU M L, CHEN M, LI D Z, et al. Dynamics modeling and simulation analysis of hybrid-drive parallel mechanism[J]. Journal of Machine Design, 2024, 41(3): 112-121.
18 PEIFFER K. On inversion of the Lagrange-Dirichlet theorem[J]. Journal of Applied Mathematics and Mechanics, 1991, 55(4): 436-441.
19 WANG D G, CHEN J H, PHAM H T. A tristable compliant micromechanism with two serially connected bistable mechanisms[J]. Mechanism and Machine Theory, 2014, 71: 27-39.
20 GUO F, SUN T, WANG P F, et al. A novel spatial parallel multi-stable mechanism with eight stable states[J]. Mechanism and Machine Theory, 2023, 183: 105254.
21 朱春霞, 闫志标, 王静, 等. 平面3-PRR并联机构刚柔耦合动力学研究[J]. 机械设计与制造, 2018(5): 211-213, 217.
ZHU C X, YAN Z B, WANG J, et al. Dynamics analysis of rigid-flexible coupling system of 3-PRR planar flexible parallel mechanism[J]. Machinery Design & Manufacture, 2018(5): 211-213, 217.
[1] 李河舟,方杰,钱武,黄龙,谢霆聪,徐锦涛. 基于折纸的被动触发双稳态机器人手设计[J]. 工程设计学报, 2024, 31(4): 465-472.
[2] 张小强,鲁碧为,刘家琴,吴玉程. 聚变堆偏滤器拓扑优化设计与稳态热分析[J]. 工程设计学报, 2023, 30(5): 601-607.
[3] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[4] 孔垂旺, 陈为林, 卢清华, 罗陆锋, 张云志. 单级柔顺正交位移放大机构非线性建模与优化[J]. 工程设计学报, 2020, 27(1): 76-86.
[5] 孙 楷,薄瑞峰,路建鹏,李瑞琴. 基于整体应变的柔顺机构多目标拓扑优化设计[J]. 工程设计学报, 2015, 22(6): 575-580.
[6] 伍建军,万良琪,吴事浪,聂鹏飞,吴佳伟. 基于田口方法的柔性铰链柔度稳健优化设计[J]. 工程设计学报, 2015, 22(3): 224-229.
[7] 周孟绍,潘 骏,陈文华,贺青川. 基于随机Petri网的铜带拉弯矫直机可用度分析[J]. 工程设计学报, 2015, 22(2): 137-142.
[8] 张 强,赵 亮. 基于模糊灰色关联的三轴汽车操纵稳定性分析[J]. 工程设计学报, 2015, 22(1): 58-65.
[9] 田乃硕, 高春燕, 马明建, 曾 慧. 兼职辅助业务的冷贮备机器维修模型[J]. 工程设计学报, 2008, 15(6): 400-406.