Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (2): 151-158    DOI: 10.3785/j.issn.1006-754X.2025.04.162
机械设计理论与方法     
考虑自支撑临界角的3D打印混凝土球壳结构拆分方法与成形实验
李胤贤1(),蒋友宝2(),刘艳2,高鹏翔2
1.长沙理工大学 卓越工程师学院,湖南 长沙 410114
2.长沙理工大学 土木与环境工程学院,湖南 长沙 410114
Splitting method and forming experiment of 3D printed concrete spherical shell structure considering self-supporting critical angle
Yinxian LI1(),Youbao JIANG2(),Yan LIU2,Pengxiang GAO2
1.Elite Engineering School, Changsha University of Science and Technology, Changsha 410114, China
2.School of Civil and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China
 全文: PDF(3689 KB)   HTML
摘要:

为实现3D打印混凝土球壳结构的无支撑建造,提出了一种基于自支撑临界角的结构拆分方法。该方法将结构拆分问题转化为单目标优化问题,并根据改进遗传算法和动态优化拆分策略,寻求得到较为简便、可行的球壳结构拆分方案。基于所获得的拆分方案,可将球壳结构拆分成若干个可自支撑打印的单元,对拆分单元逐一打印后完成整体结构的拼接。对于混凝土球壳结构而言,随着材料自支撑临界角的增大,拆分单元数量增加。为降低拆分单元数量过多对球壳结构后续连接及整体性能的不利影响,混凝土材料的自支撑临界角不宜过大。现场成形实验结果表明,基于所提出的方法可实现3D打印混凝土球壳结构的有效拆分,在打印过程中能够避免结构支模工作,提高了建造效率。

关键词: 3D打印混凝土球壳结构自支撑临界角遗传算法结构拆分    
Abstract:

In order to achieve the unsupported construction of 3D printed concrete spherical shell structures, a structure splitting method based on self-supporting critical angle is proposed. In this method, the structure splitting problem was converted into a single-objective optimization problem, and the relatively simple and feasible spherical shell structure splitting scheme was obtained by the improved genetic algorithm and dynamically optimized splitting strategy. The spherical shell structure could be split into multiple self-supporting printable units based on the obtained splitting scheme, and the whole structure could be assembled after the splitting units were printed one by one. For the concrete spherical shell structure, the number of splitting units increased with the increase of material self-supporting critical angle. To minimize the adverse effects of the number of splitting units on the subsequent connection and overall performance of the spherical shell structure, the self-supporting critical angle of the concrete material should be limited. The results of field forming experiments show that the proposed method can effectively split the 3D printed concrete spherical shell structure and avoid structural formwork during the printing process, thereby enhancing construction efficiency.

Key words: 3D printed concrete    spherical shell structure    self-supporting critical angle    genetic algorithm    structure splitting
收稿日期: 2024-07-29 出版日期: 2025-05-06
CLC:  TU 741  
基金资助: 国家自然科学基金资助项目(52378126);湖南建工集团有限公司科技重点项目(JGJTK2022-13)
通讯作者: 蒋友宝     E-mail: L505175648@163.com;jiangybseu@163.com
作者简介: 李胤贤(2002—),男,硕士生,从事3D打印混凝土建造技术与无损检测技术研究,E-mail: L505175648@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李胤贤
蒋友宝
刘艳
高鹏翔

引用本文:

李胤贤,蒋友宝,刘艳,高鹏翔. 考虑自支撑临界角的3D打印混凝土球壳结构拆分方法与成形实验[J]. 工程设计学报, 2025, 32(2): 151-158.

Yinxian LI,Youbao JIANG,Yan LIU,Pengxiang GAO. Splitting method and forming experiment of 3D printed concrete spherical shell structure considering self-supporting critical angle[J]. Chinese Journal of Engineering Design, 2025, 32(2): 151-158.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.162        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/151

图1  结构悬挑区域示意
图2  球壳结构拆分示意
图3  球壳结构拆分打印过程
图4  基于改进遗传算法的球壳结构拆分流程
图5  球壳结构示意图
图6  球壳结构的STL模型
图7  球壳结构横断面拆分情况
环向拆分数/次拆分单元数量/个连接处面积/cm2
3121 232.4
4161 358.1
5201 483.8
6241 609.5
表1  不同环向拆分次数下球壳结构的拆分结果
图8  自支撑临界角为65°时球壳结构的拆分过程
分层序号环向拆分数N/次环向拆分角度θj/(°)分割点坐标(xi,?yi)/mm分割平面倾斜角度αi?/(°)
θ1θ2θ3
1360180300(225,108.97)25.84
260180300(155,196.15)51.68
360180300(55,243.875)77.29
460180300(0,250)90.00
表2  自支撑临界角为65°时球壳结构的拆分方案
材料质量分数/%
细砂38.30
普通硅酸盐水泥34.10
13.60
偏高岭土4.80
粉煤灰4.80
硅灰2.40
快硬水泥1.80
纤维0.08
减水剂0.01
消泡剂0.09
纤维素醚0.02
表3  混凝土材料各组成部分的质量分数
图9  混凝土材料自支撑临界角测定原理
图10  混凝土材料自支撑临界角测定现场
图11  打印过程中的各混凝土分块
图12  K1部分的各混凝土分块
图13  拼接后的K1部分结构
图14  球壳结构及其直径
1 蒋友宝, 胡佳鑫, 周浩, 等. 起始点逐层等角度移动时3D打印混凝土圆管可连续打印高度[J]. 建筑结构学报, 2022, 43(9): 222-231.
JIANG Y B, HU J X, ZHOU H, et al. Continuous printed height of 3D printing concrete circular tube with equiangular movements of starting point[J]. Journal of Building Structures, 2022, 43(9): 222-231.
2 贺昊轩, 蒋友宝, 邓云峰, 等. 3D打印预制混凝土扭曲面模壳-现浇柱节段成形试验研究[J]. 长沙理工大学学报(自然科学版), 2022, 19(4): 47-54.
HE H X, JIANG Y B, DENG Y F, et al. Experimental study on segmental forming of 3D printing prefabricated concrete twisted formwork-cast-in-situ concrete column[J]. Journal of Changsha University of Science & Technology (Natural Science), 2022, 19(4): 47-54.
3 林晓阳, 叶俊, 王震, 等. 考虑悬垂约束的3D打印结构优化方法及实验研究[J/OL]. 工程力学, 2023: 1-11(2023-09-05) [2024-07-01]. .
LIN X Y, YE J, WANG Z, et al. Optimization method and experimental study of 3D printed structures considering overhang constraints[J/OL]. Engineering Mechanics, 2023: 1-11(2023-09-05) [2024-07-01]. .
4 周钰琛. 无支撑建筑3D打印技术应用研究[D]. 无锡: 江南大学, 2023.
ZHOU Y C. Research on the application of support-free 3D printing technology for architectures[D]. Wuxi: Jiangnan University, 2023.
5 王铮, 赵东标. FDM五轴3D打印支撑消减算法研究[J]. 机械科学与技术, 2023, 42(10): 1673-1677.
WANG Z, ZHAO D B. Study on elimination-reduction algorithm of support in five-axis 3D printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1673-1677.
6 KONTOVOURKIS O, PHOCAS M C, TRYFONOS G, et al. Multi-axis 3D printing of material reduced shell structures on a reconfigurable supporting system using topology optimization principles[J]. Procedia Manufacturing, 2020, 44: 379-386.
7 KONTOVOURKIS O, PHOCAS M C, KATSAMBAS C. Digital to physical development of a reconfigurable modular formwork for concrete casting and assembling of a shell structure[J]. Automation in Construction, 2019, 106: 102855.
8 YANG Y, CHAI S M, FU X M. Computing interior support-free structure via hollow-to-fill construction[J]. Computers & Graphics, 2018, 70: 148-156.
9 ZENG L, LAI L M, QI D, et al. Efficient slicing procedure based on adaptive layer depth normal image[J]. Computer-Aided Design, 2011, 43(12): 1577-1586.
10 WEI X Z, QIU S Q, ZHU L, et al. Toward support-free 3D printing: a skeletal approach for partitioning models[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(10): 2799-2812.
11 颜欣桐, 徐龙河. 基于遗传算法的钢筋混凝土框架-剪力墙结构失效模式多目标优化[J]. 工程力学, 2018, 35(4): 69-77.
YAN X T, XU L H. Multi-objective optimization of genetic algorithm-based failure mode for reinforced concrete frame-shear wall structures[J]. Engineering Mechanics, 2018, 35(4): 69-77.
12 危大结, 舒赣平, 顾华健. 自由曲面结构多目标形态优化[J]. 建筑结构, 2017, 47(5): 59-63.
WEI D J, SHU G P, GU H J. Multi-objective shape optimization of free-form surface structures[J]. Building Structure, 2017, 47(5): 59-63.
13 易伟建, 刘霞. 基于遗传算法的结构损伤诊断研究[J]. 工程力学, 2001, 18(2): 64-71.
YI W J, LIU X. Damage diagnosis of structures by genetic algorithms[J]. Engineering Mechanics, 2001, 18(2): 64-71.
14 HU H L, LI Z, JIN X G, et al. Curve skeleton extraction from 3D point clouds through hybrid feature point shifting and clustering[J]. Computer Graphics Forum, 2020, 39(6): 111-132.
15 胡伟南, 冯颖, 王迪, 等. 激光选区熔化成形低角度无支撑结构的方法与工艺研究(特邀)[J]. 中国激光, 2024, 51(4): 168-180.
HU W N, FENG Y, WANG D, et al. Method and process of selective laser melting forming low-angle support-free structures(invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 168-180.
16 崔衡, 马宗方, 宋琳, 等. 基于连续顶点分区的混凝土3D打印路径规划算法[J]. 工程设计学报, 2024, 31(3): 271-279.
CUI H, MA Z F, SONG L, et al. Path planning algorithm for concrete 3D printing based on continuous vertex partitioning[J]. Chinese Journal of Engineering Design, 2024, 31(3): 271-279.
17 彭勃, 葛序尧, 单远铭. 加固用高性能聚合物改性砂浆研究[J]. 建筑结构, 2009, 39(1): 102-104.
PENG B, GE X Y, SHAN Y M. Study on the high performance polymer modified mortar for structural strengthening[J]. Building Structure, 2009, 39(1): 102-104.
18 李之建, 马国伟, 王里. 3D打印连续微筋混凝土梁受弯承载力试验研究[J]. 实验力学, 2021, 36(4): 516-524.
LI Z J, MA G W, WANG L. Experimental study on the bending capacity of 3D printed continuous micro-reinforcement reinforced concrete beams[J]. Journal of Experimental Mechanics, 2021, 36(4): 516-524.
19 朱艳梅, 张翼, 蒋正武. 羟丙基甲基纤维素对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(6): 1123-1130.
ZHU Y M, ZHANG Y, JIANG Z W. Effect of hydroxypropyl methylcellulose ether on properties of 3D printing mortar[J]. Journal of Building Materials, 2021, 24(6): 1123-1130.
[1] 曾妮,马宗方,宋琳,段明. 3D打印混凝土界面孔隙智能检测方法研究[J]. 工程设计学报, 2025, 32(1): 11-22.
[2] 崔衡,马宗方,宋琳,刘超,韩怡萱. 基于连续顶点分区的混凝土3D打印路径规划算法[J]. 工程设计学报, 2024, 31(3): 271-279.
[3] 余晓波,陈素姣,章勇华,马彬隽. 基于遗传算法的集中式传动系统齿轮修形及模态优化研究[J]. 工程设计学报, 2024, 31(3): 340-347.
[4] 冀炳晖,茅健,钱波. 基于遗传算法-模糊PID的双喷头FDM3D打印机温度控制方法[J]. 工程设计学报, 2024, 31(2): 151-159.
[5] 田雅琴,胡梦辉,刘文涛,侯寅智. 基于跳点搜索-遗传算法的自主移动机器人路径规划[J]. 工程设计学报, 2023, 30(6): 697-706.
[6] 赵迪,陈果,陈小利,王熊锦. 轮式搜救机器人地形自适应机构设计及越障性能分析[J]. 工程设计学报, 2023, 30(5): 579-589.
[7] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.
[8] 米鑫,李虹,郭彦青,高宏伟,王浩楠,宁羿帆. 基于线性回归的单柱塞泵单向阀参数优化[J]. 工程设计学报, 2022, 29(6): 705-712.
[9] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[10] 丁述勇, 张征, 丁文洁, 林勇. 多巷道式立体车库优化设计与车辆存取策略研究[J]. 工程设计学报, 2021, 28(4): 443-449.
[11] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(1): 67-75.
[12] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402.
[13] 马天兵, 王孝东, 杜菲, 王鑫泉. 基于GA-SVM的刚性罐道故障诊断[J]. 工程设计学报, 2019, 26(2): 170-176.
[14] 邓星, 于兰峰, 雷聪, 徐江平, 肖泽平. 基于响应面法的无轨伸缩式门式起重机轻量化设计[J]. 工程设计学报, 2018, 25(3): 288-294.
[15] 唐维, 谢延敏, 黄仁勇, 张飞, 潘贝贝. 基于自适应SVR-ELM混合近似模型的镁合金差温成形本构参数反求[J]. 工程设计学报, 2017, 24(5): 536-544.