|
|
基于聚类椭球模型的机械系统不确定性分析方法 |
马正琰1,2( ),欧阳衡1,2( ),郝志杰1,2,高硕1,2,刘宝会1,2 |
1.河北工业大学 机械工程学院,天津 300401 2.河北工业大学 智能配用电装备与系统全国重点实验室,天津 300401 |
|
Uncertainty analysis method for mechanical system based on multi-cluster ellipsoidal model |
Zhengyan MA1,2( ),Heng OUYANG1,2( ),Zhijie HAO1,2,Shuo GAO1,2,Baohui LIU1,2 |
1.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China 2.State Key Laboratory of Intelligent Power Distribution Equipment and System, Hebei University of Technology, Tianjin 300401, China |
引用本文:
马正琰,欧阳衡,郝志杰,高硕,刘宝会. 基于聚类椭球模型的机械系统不确定性分析方法[J]. 工程设计学报, 2025, 32(2): 141-150.
Zhengyan MA,Heng OUYANG,Zhijie HAO,Shuo GAO,Baohui LIU. Uncertainty analysis method for mechanical system based on multi-cluster ellipsoidal model[J]. Chinese Journal of Engineering Design, 2025, 32(2): 141-150.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.168
或
https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/141
|
1 |
OUYANG H, LIU J, HAN X, et al. Non-probabilistic uncertain inverse problem method considering correlations for structural parameter identification[J]. Structural and Multidisciplinary Optimization, 2021, 64(3): 1327-1342.
|
2 |
ZHANG D Q, SHEN S S, JIANG C, et al. An advanced mixed-degree cubature formula for reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 400: 115521.
|
3 |
赵子达, 张德权, 欧阳衡, 等. 径向基函数-稀疏多项式混沌展开混合代理模型可靠性分析方法[J]. 机械强度, 2023, 45(5): 1108-1116. ZHAO Z D, ZHANG D Q, OUYANG H, et al. Reliability analysis on hybrid surrogate model of radial basis function and sparse polynomial chaos expansion[J]. Journal of Mechanical Strength, 2023, 45(5): 1108-1116.
|
4 |
JIANG C, HAN X, LU G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(33/34/35/36): 2528-2546.
|
5 |
刘浩, 刘杰, 姜潮, 等. 基于凸模型和伪概率分布的不确定性结构响应分析[J]. 固体力学学报, 2015, 36(6): 537-543. LIU H, LIU J, JIANG C, et al. Uncertainty analysis of structural response based on convex model and pseudo-probability distribution[J]. Chinese Journal of Solid Mechanics, 2015, 36(6): 537-543.
|
6 |
吕震宙, 冯蕴雯. 结构可靠性问题研究的若干进展[J]. 力学进展, 2000, 30(1): 21-28. LÜ Z Z, FENG Y W. Advances in structural reliability studies[J]. Advances in Mechanics, 2000, 30(1): 21-28.
|
7 |
ZHANG D Q, JIA J K, HAN Z H, et al. An efficient uncertainty quantification and propagation method through skewness and kurtosis fitting region[J]. Structural and Multidisciplinary Optimization, 2023, 66(2): 36.
|
8 |
ZHANG D Q, ZHAO Z D, OUYANG H, et al. An efficient reliability analysis method based on the improved radial basis function neural network[J]. Journal of Mechanical Design, 2023, 145(8): 081705.
|
9 |
余萌晨, 龙湘云. 基于两阶段主动学习Kriging模型的广义概率区间混合可靠性分析[J]. 机械工程学报, 2022, 58(6): 274-288. doi:10.3901/jme.2022.06.274 YU M C, LONG X Y. Generalized probability and interval hybrid reliability analysis based on two-stage active learning Kriging model[J]. Journal of Mechanical Engineering, 2022, 58(6): 274-288.
doi: 10.3901/jme.2022.06.274
|
10 |
NI B Y, JIANG C, HAN X. An improved multidimensional parallelepiped non-probabilistic model for structural uncertainty analysis[J]. Applied Mathematical Modelling, 2016, 40(7/8): 4727-4745.
|
11 |
WANG C, QIU Z P. Interval analysis of steady-state heat convection-diffusion problem with uncertain-but-bounded parameters[J]. International Journal of Heat and Mass Transfer, 2015, 91: 355-362.
|
12 |
NI B Y, JIANG C. Interval field model and interval finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112713.
|
13 |
WANG C, MATTHIES H G. Novel interval theory-based parameter identification method for engineering heat transfer systems with epistemic uncertainty[J]. International Journal for Numerical Methods in Engineering, 2018, 115(6): 756-770.
|
14 |
BEN-HAIM Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14(4): 227-245.
|
15 |
ZHU L P, ELISHAKOFF I, STARNES J H. Derivation of multi-dimensional ellipsoidal convex model for experimental data[J]. Mathematical and Computer Modelling, 1996, 24(2): 103-114.
|
16 |
JIANG C, ZHANG Q F, HAN X, et al. A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model[J]. Acta Mechanica, 2014, 225(2): 383-395.
|
17 |
王攀, 臧朝平. 改进的平行六面体凸模型识别动力学不确定参数区间的方法[J]. 振动工程学报, 2019, 32(1): 97-106. WANG P, ZANG C P. Method of identifying dynamic uncertain parameter intervals with improved parallelepiped convex model[J]. Journal of Vibration Engineering, 2019, 32(1): 97-106.
|
18 |
CAO L X, LIU J, XIE L, et al. Non-probabilistic polygonal convex set model for structural uncertainty quantification[J]. Applied Mathematical Modelling, 2021, 89: 504-518.
|
19 |
刘杰, 谢凌, 卿宏军, 等. 基于主成分分析的结构不确定性建模与传播研究[J]. 计算力学学报, 2017, 34(4): 411-416. LIU J, XIE L, QING H J, et al. Structural uncertainty modeling and propagation based on principal component analysis[J]. Chinese Journal of Computational Mechanics, 2017, 34(4): 411-416.
|
20 |
KANG Z, ZHANG W B. Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 300: 461-489.
|
21 |
JIANG C, ZHANG Q F, HAN X, et al. Multidimensional parallelepiped model: a new type of non-probabilistic convex model for structural uncertainty analysis[J]. International Journal for Numerical Methods in Engineering, 2015, 103(1): 31-59.
|
22 |
LI K, LIU H W. Structural reliability analysis by using non-probabilistic multi-cluster ellipsoidal model[J]. Entropy, 2022, 24(9): 1209.
|
23 |
刘浩, 杨开云, 张德权. 基于聚类椭球模型的不确定性传播分析[J]. 计算力学学报, 2018, 35(4): 431-436. LIU H, YANG K Y, ZHANG D Q. Uncertain propagation based on the cluster-ellipsoid model[J]. Chinese Journal of Computational Mechanics, 2018, 35(4): 431-436.
|
24 |
WANG C, MATTHIES H G. A modified parallelepiped model for non-probabilistic uncertainty quantification and propagation analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113209.
|
25 |
LIU J, YU Z B, ZHANG D Q, et al. Multimodal ellipsoid model for non-probabilistic structural uncertainty quantification and propagation[J]. International Journal of Mechanics and Materials in Design, 2021, 17(3): 633-657.
|
26 |
PANDA S K, JANA P K. Efficient task scheduling algorithms for heterogeneous multi-cloud environment[J]. The Journal of Supercomputing, 2015, 71(4): 1505-1533.
|
27 |
LEE H, YOO J H, PARK D. Data clustering method using a modified Gaussian kernel metric and kernel PCA[J]. ETRI Journal, 2014, 36(3): 333-342.
|
28 |
欧阳衡. 基于相关性分析的结构不确定性传播与计算反求方法研究[D]. 长沙: 湖南大学, 2020: 16-37. OUYANG H. Research on structural uncertainty propagation and computational inverse methods based on correlation analysis[D]. Changsha: Hunan University, 2020: 16-37.
|
29 |
OUYANG H, WANG H Y, LIU J, et al. Non-probabilistic sensitivity analysis method for multi-input-multi-output structures considering correlations[J]. International Journal of Mechanical Sciences, 2024, 271: 109123.
|
30 |
WANG C, QIANG X, FAN H R, et al. Novel data-driven method for non-probabilistic uncertainty analysis of engineering structures based on ellipsoid model[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114889.
|
31 |
丁鹭飞, 耿富禄, 陈建春. 雷达原理[M]. 4版. 西安: 西安电子科技大学出版社, 2020: 163-167. DING L F, GENG F L, CHEN J C. Principles of radar[M]. Xi'an: Xidain University Press, 2002: 163-167.
|
32 |
欧阳衡, 高硕, 王世涛, 等. 基于子区间的雷达探测距离和测距精度分析[J]. 工程设计学报, 2024, 31(3): 332-339. OUYANG H, GAO S, WANG S T, et al. Analysis of radar detection distance and ranging accuracy based on subinterval[J]. Chinese Journal of Engineering Design, 2024, 31(3): 332-339.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|