1 |
张大旺, 王栋民. 3D打印混凝土材料及混凝土建筑技术进展[J]. 硅酸盐通报, 2015, 34(6): 1583-1588. ZHANG D W, WANG D M. Progress of 3D print of concrete materials and concrete construction technology[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1583-1588.
|
2 |
陈权要, 周燕, 周诚. 混凝土3D打印的机器视觉检测研究现状与展望[J]. 土木建筑工程信息技术, 2023, 15(5): 1-8. CHEN Q Y, ZHOU Y, ZHOU C. The research status and prospect of machine vision inspection for 3D concrete printing[J]. Journal of Information Technology in Civil Engineering and Architecture, 2023, 15(5): 1-8.
|
3 |
杨敏, 来猛刚, 窦艳宁, 等. 混凝土3D打印质量影响因素及控制方法[J]. 混凝土与水泥制品, 2021(4): 11-16. YANG M, LAI M G, DOU Y N, et al. Influencing factors and control measures of concrete 3D printing quality[J]. China Concrete and Cement Products, 2021(4): 11-16.
|
4 |
刘化威, 刘超, 白国良, 等. 基于孔结构缺陷的3D打印粗骨料混凝土力学性能试验研究[J]. 土木工程学报, 2022, 55(12): 54-64. doi:10.1016/j.addma.2022.102843 LIU H W, LIU C, BAI G L, et al. Experimental study on mechanical properties of 3D printed coarse aggregate concrete based on the pore structure defects[J]. China Civil Engineering Journal, 2022, 55(12): 54-64.
doi: 10.1016/j.addma.2022.102843
|
5 |
王超, 王川婴, 王益腾, 等. 基于孔壁光学图像的岩石孔隙结构识别与分析方法研究[J]. 岩石力学与工程学报, 2021, 40(9): 1894-1901. WANG C, WANG C Y, WANG Y T, et al. Research on identification and analysis method of rock pore structure based on optical images of borehole walls[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9): 1894-1901.
|
6 |
马宗方, 杨兴伟, 宋琳, 等. 基于层间信息熵的混凝土3D打印构件精细分割[J]. 激光与光电子学进展, 2022, 59(4): 101-108. MA Z F, YANG X W, SONG L, et al. Fine segmentation of concrete 3D-printed elements based on information entropy between layers[J]. Laser & Optoelectronics Progress, 2022, 59(4): 101-108.
|
7 |
陈雁, 李祉呈, 程超, 等. FLU-net: 用于表征页岩储层微观孔隙的深度全卷积网络[J]. 海洋地质前沿, 2021, 37(8): 34-43. CHEN Y, LI Z C, CHENG C, et al. FLU-net: a deep fully convolutional neural network for shale reservoir micro-pore characterization[J]. Marine Geology Frontiers, 2021, 37(8): 34-43.
|
8 |
REN Y P, HUANG J S, HONG Z Y, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234: 117367.
|
9 |
LIANG H, LEE S C, SEO S. UAV-based low altitude remote sensing for concrete bridge multi-category damage automatic detection system[J]. Drones, 2023, 7(6): 386.
|
10 |
苗新法, 刘宝莲, 李晓琴, 等. 改进YOLOv5s的铁轨裂纹目标检测算法[J]. 计算机工程与应用, 2024, 60(12): 216-224. MIAO X F, LIU B L, LI X Q, et al. Improved YOLOv5s railway crack target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(12): 216-224.
|
11 |
ZHANG S H, YANG H K, YANG C H, et al. Edge device detection of tea leaves with one bud and two leaves based on ShuffleNetv2-YOLOv5-lite-E[J]. Agronomy, 2023, 13(2): 577.
|
12 |
WANG X F, WU Z W, JIA M, et al. Lightweight SM-YOLOv5 tomato fruit detection algorithm for plant factory[J]. Sensors, 2023, 23(6): 3336.
|
13 |
CAO M L, FU H, ZHU J Y, et al. Lightweight tea bud recognition network integrating GhostNet and YOLOv5[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12897-12914.
|
14 |
ZHANG Y, SUN Y P, WANG Z, et al. YOLOv7-RAR for urban vehicle detection[J]. Sensors, 2023, 23(4): 1801.
|
15 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
16 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, Jun. 27-30, 2016.
|
17 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Lecture Notes in Computer Science. Cham: Springer, 2016: 21-37.
|
18 |
YAN J H, ZHOU Z, ZHOU D J, et al. Underwater object detection algorithm based on attention mechanism and cross-stage partial fast spatial pyramidal pooling[J]. Frontiers in Marine Science, 2022, 9: 1056300.
|
19 |
GAO G, LEE S H. Design and implementation of fire detection system using new model mixing[J]. International Journal of Advanced Culture Technology, 2021, 9(4): 260-267.
|
20 |
JIANG K L, XIE T Y, YAN R, et al. An attention mechanism-improved YOLOv7 object detection algorithm for hemp duck count estimation[J]. Agriculture, 2022, 12(10): 1659.
|
21 |
ZHENG J F, WU H, ZHANG H, et al. Insulator-defect detection algorithm based on improved YOLOv7[J]. Sensors, 2022, 22(22): 8801.
|
22 |
TENG S, LIU Z C, LI X D. Improved YOLOv3-based bridge surface defect detection by combining high-and low-resolution feature images[J]. Buildings, 2022, 12(8): 1225.
|
23 |
ZHANG Y X, HUANG J, CAI F H. On bridge surface crack detection based on an improved YOLOv3 algorithm[J]. IFAC-PapersOnLine, 2020, 53(2): 8205-8210.
|
24 |
WU P R, LIU A R, FU J Y, et al. Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm[J]. Engineering Structures, 2022, 272: 114962.
|
25 |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//European Conference on Computer Vision. Munich, Sep. 8-14, 2018.
|
26 |
LIU H J, LIU F Q, FAN X Y, et al. Polarized self-attention: towards high-quality pixel-wise regression[EB/OL]. (2021-07-08) [2024-01-20]. .
|
27 |
YANG R J, LI W F, SHANG X N, et al. KPE-YOLOv5: an improved small target detection algorithm based on YOLOv5[J]. Electronics, 2023, 12(4): 817.
|
28 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, Jun. 18-23, 2018.
|
29 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Munich, Sep. 8-14, 2018.
|
30 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, Jun. 18-23, 2018.
|
31 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, Jun. 20-25, 2021.
|
32 |
LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. (2021-12-10) [2024-01-20]. .
|
33 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, Jun. 13-19, 2020.
|