Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (5): 603-613    DOI: 10.3785/j.issn.1006-754X.2024.03.217
优化设计     
更换托辊机器人履带式底盘的仿真与优化
田立勇(),敖华(),于宁,唐瑞
辽宁工程技术大学 机械工程学院,辽宁 阜新 123000
Simulation and optimization of crawler chassis of idler replacement robot
Liyong TIAN(),Hua AO(),Ning YU,Rui TANG
School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
 全文: PDF(4183 KB)   HTML
摘要:

为满足更换托辊机器人在煤矿井下复杂路面上以及狭窄长运距巷道内作业的需求,设计了带有姿态调整机构的履带式底盘,并结合煤矿井下的地形特征对底盘进行力学性能分析和关键部件优化。首先,利用多体动力学仿真软件RecurDyn建立履带行走机构的动力学模型,对6种经典工况进行仿真分析,通过对比履带张紧力和行驶转矩的仿真值与理论值来验证履带行走机构结构设计的合理性。然后,在ANSYS Workbench软件中对姿态调整机构进行静力学分析,并对其关键部件进行拓扑优化,以提高材料利用率并实现减重。最后,通过开展机器人行驶试验来测试履带式底盘的稳定性。结果表明,优化后姿态调整机构横移平台的最大应力降低了13.71 MPa,质量减小了36.92%;机器人在不同路况下均能稳定行驶且其姿态调整机构可正常工作。研究结果可为复杂工况下履带式煤矿机电设备的行驶性能优化提供参考。

关键词: 履带式底盘多体动力学仿真拓扑优化履带张紧力行驶转矩    
Abstract:

In order to meet the needs of idler replacement robot operating on complex road surface and narrow long-distance roadway in coal mine, a crawler chassis with attitude adjustment mechanism was designed, and the mechanical performance analysis and key component optimization for the chassis were conducted based on the terrain characteristics of coal mine. Firstly, the dynamics model of the crawler walking mechanism was established by the multi-body dynamics simulation software RecurDyn, and six classical working conditions were simulated and analyzed. The rationality of the structure design of the crawler walking mechanism was verified by comparing the simulated and theoretical values of the tensioning force and driving torque of crawler. Then, the statics analysis for the attitude adjustment mechanism was conducted in the ANSYS Workbench software, and the topology optimization of its key components was carried out to improve material utilization and reduce weight. Finally, the stability of the crawler chassis was tested by conducting robot driving tests. The results showed that the maximum stress and mass of the transverse platform of the optimized attitude adjustment mechanism were reduced by 13.71 MPa and 36.92%, respectively. The robot could drive stably under different road conditions, and its attitude adjustment mechanism could work normally. The research results can provide reference for the driving performance optimization of crawler coal mine electromechanical equipment under complex working conditions.

Key words: crawler chassis    multi-body dynamics simulation    topology optimization    tensioning force of crawler    driving torque
收稿日期: 2023-11-27 出版日期: 2024-10-30
CLC:  TD 528  
基金资助: 国家自然科学基金面上项目(52174143)
通讯作者: 敖华     E-mail: tianliyong2003@163.com;869847215@qq.com
作者简介: 田立勇(1979—),男,副教授,博士,从事机电一体化研究,E-mail: tianliyong2003@163.com,https://orcid.org/0000-0002-8690-5550
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田立勇
敖华
于宁
唐瑞

引用本文:

田立勇,敖华,于宁,唐瑞. 更换托辊机器人履带式底盘的仿真与优化[J]. 工程设计学报, 2024, 31(5): 603-613.

Liyong TIAN,Hua AO,Ning YU,Rui TANG. Simulation and optimization of crawler chassis of idler replacement robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 603-613.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.217        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I5/603

图1  更换托辊机器人作业环境1—带式输送机;2—巷道空间;3—更换托辊机器人;4—作业通道。
技术参数取值及要求
环境温度/℃-30~60
外形尺寸(长××)/(m×m×m)4.50×1.14×1.60
整机质量/kg4 500
行驶方式履带行驶
驱动装置防爆柴油机(国三标准)
行驶速度/(km/h)3
爬坡角度/(°)15
关节驱动方式液压驱动
液压系统工作压力/MPa21
控制模式手动/电液控制
连续工作时长/h5
表1  更换托辊机器人主要技术参数
图2  更换托辊机器人整体结构1—执行机构工作平面;2—三级伸缩机构;3—执行机构;4—姿态调整机构;5—履带行走机构。
图3  底盘框架三维模型1—上层纵梁;2—上层横梁;3—下层横梁;4—履带机架。
图4  单侧履带结构1—张紧轮;2.机架;3—上托板;4—驱动轮;5—履带板;6—支重轮;7—减速器。
图5  履带受力分析1—自由支段;2—工作支段;3—支持支段。
图6  姿态调整机构工作原理1—执行机构;2—执行机构底部平面;3—工作平面;4—带式输送机皮带。
图7  姿态调整机构整体结构1—横移液压缸;2—横移平台;3—侧倾平台;4—旋转平台;5—旋转液压缸;6—侧倾液压缸;7—升降俯仰平台;8—升降俯仰液压缸;9—纵移液压缸;10—纵移平台。
图8  升降俯仰平台工作过程
图9  横移平台、纵移平台与旋转平台的工作过程
图10  侧倾平台的工作过程
图11  更换托辊机器人动力学模型
特征参数硬质路面黏土路面
土壤内聚力变形模量/Pa0.042 00.417 0
土壤内摩擦变形模量/Pa0.012 00.021 9
变形指数0.70.5
内聚力/N0.001 70.004 1
剪切角/(°)2913
水平剪切变形模数/mm2525
下沉率/%55
表2  不同路面的特征参数
图12  3种行驶工况示意
图13  不同行驶工况下履带的张紧力曲线
图14  不同行驶工况下履带的行驶转矩曲线
图15  姿态调整机构三维模型
图16  姿态调整机构有限元模型
图17  姿态调整机构的应力云图
图18  横移平台拓扑优化结果
图19  优化后横移平台的应力云图
图20  更换托辊机器人行驶试验现场
图21  姿态调整机构运行试验现场
1 杨兰峰. 国内外带式输送机的现状及发展趋势[J]. 机械管理开发, 2016, 31(4): 119-120.
YANG L F. Development trend and status of belt conveyor[J]. Mechanical Management and Development, 2016, 31(4): 119-120.
2 曲建平. 煤矿带式输送机现状与发展趋势[J]. 煤炭科技, 2015, 36(4): 146-147.
QU J P. Present situation and development trend of belt conveyor in coal mine[J]. Coal Science & Technology Magazine, 2015, 36(4): 146-147.
3 沈鑫, 杨金艳. 皮带机托辊更换工具的研制及应用[J]. 黄金, 2016, 37(10): 51-53.
SHEN X, YANG J Y. Development and application of belt conveyor roller replacement tools[J]. Gold, 2016, 37(10): 51-53.
4 李雨潭, 李猛钢, 朱华. 煤矿搜救机器人履带式行走机构性能评价体系[J]. 工程科学学报, 2017, 39(12): 1913-1921.
LI Y T, LI M G, ZHU H. Performance evaluation system of the tracked walking mechanism of a coal mine rescue robot[J]. Chinese Journal of Engineering, 2017, 39(12): 1913-1921.
5 MOCERA F, NICOLINI A. Multibody simulation of a small size farming tracked vehicle[J]. Procedia Structural Integrity, 2018, 8: 118-125.
6 CHEN B Y, SUN X C, ZHENG K F, et al. A rigid flexible coupling dynamics simulation of one type of tracked vehicle based on the RecurDyn[C]//2017 IEEE International Conference on Mechatronics and Automation. Takamatsu, Aug. 6-9, 2017.
7 廖凯, 古全元, 高自成, 等. 芦苇笋采收机研制[J]. 农业工程学报, 2021, 37(15): 20-30.
LIAO K, GU Q Y, GAO Z C, et al. Development of reed shoot harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 20-30.
8 张德俊, 林蜀云, 吉旭, 等. 山地辣椒收获机履带受力分析及仿真[J]. 机械设计, 2022, 39(3): 83-90.
ZHANG D J, LIN S Y, JI X, et al. Stress analysis and simulation of the mountain pepper harvester's track[J]. Journal of Machine Design, 2022, 39(3): 83-90.
9 欧阳益斌, 李立君, 汤刚车, 等. 油茶林抚育机履带底盘设计与试验研究[J]. 西北林学院学报, 2018, 33(2): 252-256.
OUYANG Y B, LI L J, TANG G C, et al. Design and experimental research on crawler chassis of oil tea plantation tending machine[J]. Journal of Northwest Forestry University, 2018, 33(2): 252-256.
10 丁肇, 李耀明, 任利东, 等. 履带式行走机构压实作用下土壤应力分布均匀性分析[J]. 农业工程学报, 2020, 36(9): 52-58.
DING Z, LI Y M, REN L D, et al. Distribution uniformity of soil stress under compaction of tracked undercarriage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 52-58.
11 WONG J Y, HUANG W. Evaluation of the effects of design features on tracked vehicle mobility using an advanced computer simulation model[J]. International Journal of Heavy Vehicle Systems, 2005, 12(4): 344-365.
12 AL-MILLI S, SENEVIRATNE L D, ALTHOEFER K. Track-terrain modelling and traversability prediction for tracked vehicles on soft terrain[J]. Journal of Terramechanics, 2010, 47(3): 151-160.
13 SOJKA M, CORNAK S. Tracked vehicle movement modelling[C]//17th International Scientific Conference Engineering for Rural Development. Jelgava, May 23-25, 2018.
14 MȨŻYK A, CZAPLA T, KLEIN W, et al. Numerical simulation of active track tensioning system for autonomous hybrid vehicle[J]. Mechanical Systems and Signal Processing, 2017, 89: 108-118.
15 陈媛媛. 履带车辆行动系统动力学仿真分析[D]. 沈阳: 沈阳理工大学, 2012.
CHEN Y Y. The dynamic analysis and simulation of tracked vehicles[D]. Shenyang: Shenyang Ligong University, 2012.
16 白意东, 孙凌宇, 张明路, 等. 履带机器人地面力学研究进展[J]. 机械设计, 2020, 37(10): 1-13.
BAI Y D, SUN L Y, ZHANG M L, et al. Progress of research on terramechanics for tracked mobile robots[J]. Journal of Machine Design, 2020, 37(10): 1-13.
17 刘妤, 张拓, 谢铌, 等. 小型农用履带底盘多体动力学建模及验证[J]. 农业工程学报, 2019, 35(7): 39-46.
LIU Y, ZHANG T, XIE N, et al. Multi-body dynamic modeling and verification of small agricultural crawler chassis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 39-46.
18 ZHENG J Q, GAO H B, YUAN B F, et al. Design and terramechanics analysis of a Mars rover utilising active suspension[J]. Mechanism and Machine Theory, 2018, 128: 125-149.
19 KOUELO A F, MATHIEU A F, JULIEN A, et al. Variation of physical and chemical properties of soils under different cropping systems in the watershed of Kpocomey, Southern Benin[J]. Open Journal of Soil Science, 2020, 10(11): 501-517.
20 朱双霞. 机械设计[M]. 重庆: 重庆大学出版社, 2019: 3-5.
ZHU S X. Mechanical design[M]. Chongqing: Chongqing University Press, 2019: 3-5.
[1] 张小强,鲁碧为,刘家琴,吴玉程. 聚变堆偏滤器拓扑优化设计与稳态热分析[J]. 工程设计学报, 2023, 30(5): 601-607.
[2] 郑小飞,黄镇海,马小龙,王建新,王斌锐. 基于SIMP方法的爬杆机器人结构优化与分析[J]. 工程设计学报, 2023, 30(3): 342-352.
[3] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[4] 张鹄志, 马哲霖, 黄海林, 金浩, 彭玮. 不同位移边界条件下钢筋混凝土深梁拓扑优化[J]. 工程设计学报, 2019, 26(6): 691-699.
[5] 张日成, 赵炯, 吴青龙, 熊肖磊, 周奇才, 焦洪宇. 考虑结构稳定性的变密度拓扑优化方法[J]. 工程设计学报, 2018, 25(4): 441-449.
[6] 杜义贤, 李荣, 徐明, 田启华, 周祥曼. 负泊松比微结构拓扑优化设计[J]. 工程设计学报, 2018, 25(4): 450-456.
[7] 唐华平, 曾理, 王胜泽, 陈昊森. 基于拓扑优化的重型矿用自卸车翻车保护结构设计[J]. 工程设计学报, 2018, 25(3): 295-301.
[8] 邱瑞斌, 雷飞, 陈园, 王琼. 基于权重比的车架多工况拓扑优化方法研究[J]. 工程设计学报, 2016, 23(5): 444-452.
[9] 陈健伟, 朱大昌, 张荣兴, 朱城伟. 3-RPRR类平面全柔性并联机构拓扑优化设计[J]. 工程设计学报, 2016, 23(3): 251-255,270.
[10] 谢延敏, 何育军, 卓德志, 熊文诚. 高强度钢板U形件热冲压凹模结构拓扑优化[J]. 工程设计学报, 2016, 23(1): 60-66.
[11] 孙 楷,薄瑞峰,路建鹏,李瑞琴. 基于整体应变的柔顺机构多目标拓扑优化设计[J]. 工程设计学报, 2015, 22(6): 575-580.
[12] 田启华,王进学,杜义贤,王 涛. 基于密度-敏度层次更新策略的三维连续体结构拓扑优化[J]. 工程设计学报, 2015, 22(2): 155-160.
[13] 张 坤,丁晓红,倪维宇,王海华. 汽车座椅骨架构件布局设计方法[J]. 工程设计学报, 2015, 22(2): 166-171.
[14] 李文军,周奇才,吴青龙,熊肖磊. 几何非线性臂架结构稳定拓扑优化[J]. 工程设计学报, 2014, 21(5): 449-455.
[15] 杜义贤, 陈德, 周俊雄. 多载荷多工位转盘拓扑优化设计[J]. 工程设计学报, 2013, 20(3): 195-198.