Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (5): 511-517    DOI: 10.3785/j.issn.1006-754X.2017.05.004
创新设计     
多腔体式仿生气动软体驱动器的设计与制作
隋立明, 席作岩, 刘亭羽
哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001
Design and fabrication of multi-chamber biomimetic pneumatic soft actuators
SUI Li-ming, XI Zuo-yan, LIU Ting-yu
College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
 全文: PDF(4443 KB)   HTML
摘要:

软体驱动器是一种由柔软材料组成,并主要通过弹性材料的弯曲、收缩或伸长等来实现运动的执行器。软体驱动器是实现仿生软体机器人运动和动作的关键部分,开发适用的软体驱动器是进行仿生软体机器人研究的前提。为研究能够驱动软体机器人的仿生软体驱动器,基于目前常见的软体驱动器形式,提出并设计了一种多腔体式仿生气动软体驱动器。该气动软体驱动器主体结构采用硅胶材料制作,能够利用3D打印的模具进行成型。该驱动器主体结构加上底面或经组合后,可以分别得到伸长驱动器、单向弯曲驱动器及双向弯曲驱动器,能够实现类似身体柔软类动物的仿生变形运动。分别对上述3种软体驱动器的静态特性进行了测试,结果表明,在15 kPa压力下伸长驱动器的伸长率能够达到40%以上,弯曲驱动器在同样压力下也具有较大的弯曲变形。经实践证明,所设计的多腔体式仿生气动软体驱动器原理可行、制作工艺简单,能够在软体机器人及相关领域中得到广泛应用。

关键词: 气动软体驱动器软体机器人仿生    
Abstract:

Soft actuators are made of soft materials, and can realize movement through bending, contraction and extension of the soft elastomer material. Soft actuators are the key parts to realize the movement of biomimetic soft robots. Development of proper soft actuator is the prerequisite of biomimetic soft robot study. In order to develop biomimetic soft actuators which can be applied to soft robot, the structure of multi-chamber biomimetic pneumatic soft actuator is designed based on the common soft actuators structures. The main structure of the soft actuator was made of silicon rubber, and the actuator was fabricated by way of 3D printed mold. The main structure of soft actuators were affixed a base or combined to get extending actuators, unidirectional bending actuators and bidirectional bending actuators, which could deform like soft bodied animals do. The characteristics of the three soft actuators were tested. Results showed that the extending actuator has 40% extension under pressure of 15 kPa, and the bending actuator has large deformation under the same pressure. Practice proves that the principles of the multi-chamber biomimetic pneumatic soft actuators are feasible and the fabrication of the actuators is easy. The soft actuators can be applied widely in soft robots and other related areas.

Key words: pneumatic soft actuator    soft robot    biomimetic
收稿日期: 2017-05-15 出版日期: 2017-10-28
CLC:  TH138  
基金资助:

哈尔滨工程大学基础研究基金资助项目(HEUFT0504)

作者简介: 隋立明(1971-),男,黑龙江哈尔滨人,讲师,博士,从事气动技术及仿生机器人研究,E-mail:suiliming@hrbeu.edu.cn,http://orcid.org/0000-0002-5795-6324
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
隋立明
席作岩
刘亭羽

引用本文:

隋立明, 席作岩, 刘亭羽. 多腔体式仿生气动软体驱动器的设计与制作[J]. 工程设计学报, 2017, 24(5): 511-517.

SUI Li-ming, XI Zuo-yan, LIU Ting-yu. Design and fabrication of multi-chamber biomimetic pneumatic soft actuators[J]. Chinese Journal of Engineering Design, 2017, 24(5): 511-517.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.05.004        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I5/511

[1] ⅡDA F, LASCHI C. Soft robotics:challenges and perspectives[J]. Procedia Computer Science, 2011, 7:99-102.
[2] KIM S, LASCHI C, TRIMMER B. Soft robotics:a bioinspired evolution in robotics[J]. Trends in Biotechnology, 2013, 31(5):287-294.
[3] MAJIDI C. Soft robotics:a perspective-current trends and prospects for the future[J]. Soft Robotics, 2014, 1(1):5-11.
[4] 曹玉君,尚建忠,梁科山,等.软体机器人研究现状综述[J].机械工程学报,2012,48(3):25-33. CAO Yu-jun, SHANG Jian-zhong, LIANG Ke-shan, et al. Review of soft-bodied robots[J]. Journal of Mechanical Engineering, 2012, 48(3):25-33.
[5] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553):467-475.
[6] UMEDACHI T, VIKAS V,TRIMMER B A. Softworms:the design and control of non-pneumatic, 3D-printed, deformable robots[J]. Bioinspiration & Biomimetics, 2016,11(2):025001.
[7] SEOK S, ONAL C D, CHO K, et al. Meshworm:a peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5):1485-1497.
[8] CALISTI M, GIORELLI M, LEVY G, et al. An octopus-bioinspired solution to movement and manipulation for soft robots[J]. Bioinspiration & Biomimetics, 2011, 6(3):1-10.
[9] MAZZOLAI B, MARGHERI L, CIANCHETTI M. Soft-robotic arm inspired by the octopus:Ⅱ. from artificial requirements to innovative technological solutions[J]. Bioinspiration & Biomimetics, 2012, 7(2):025005.
[10] BOGUE R. Artificial muscles and soft gripping:a review of technologies and applications[J]. Industrial Robot:An International Journal, 2012, 39(6):535-540.
[11] HINES L, PETERSEN K, LUM G Z, et al. Soft actuators for small-scale robotics[J]. Advanced Materials, 2016, 29(13):1603483.
[12] ONAL C D, RUS D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot[J]. Bioinspiration & Biomimetics, 2013, 8(2):026003.
[13] SUZUMORI K, ENDO S, KANDA T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot[C]//IEEE International Conference on Robotics and Automation. Roma, Apr.10-14, 2007.
[14] CHOU C P, HANNAFORD B. Measurement and modeling of McKibben pneumatic artificial muscles[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1):90-102.
[15] MOSADEGH B, POLYGERINOS P, KEPLINGER C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Material, 2014, 24(15):2163-2170.
[16] CONNOLLY F, POLYGERINOS P, WALS C J, et al. Mechanical programming of soft actuators by varying fiber angle[J]. Soft Robotics, 2015, 2(1):26-32.
[17] KIER W M. The diversity of hydrostatic skeletons[J]. Journal of Experimental Biology, 2012, 215(Pt8):1247-1257.
[18] SHEPHERD R F, ILIEVSKIA F, CHOI W, et al. Multigait soft robot[J]. Proceedings of the National Academy of Sciences of the USA, 2011,108(51):20400-20403.
[19] PEELE B N, WALLIN T J, ZHAO H, et al. 3D printing antagonistic systems of artificial muscle using projection stereolithography[J]. Bioinspiration & Biomimetics, 2015, 10(5):055003.
[1] 王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.
[2] 丁杨,张明路,焦鑫,李满宏. 关节电机驱动六足机器人仿生结构设计与柔顺运动控制[J]. 工程设计学报, 2023, 30(2): 154-163.
[3] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[4] 芮宏斌,李路路,曹伟,王天赐,段凯文,吴莹辉. --腿复合仿生机器人步态规划及越障性能分析[J]. 工程设计学报, 2022, 29(2): 133-142.
[5] 陈亮, 陈博文, 刘晓敏, 窦昊. 用户需求映射网络生物文本的创新设计方法[J]. 工程设计学报, 2020, 27(3): 279-286.
[6] 张潇, 张秋菊. 仿人手掌的机器人变掌机构设计与分析[J]. 工程设计学报, 2019, 26(4): 385-394.
[7] 邓小雷, 庞世杰, 李瑞琦, 周宜博, 王建臣, 傅建中. 基于昆虫翅脉仿生流道的数控机床主轴系统冷却结构热设计[J]. 工程设计学报, 2018, 25(5): 583-589.
[8] 蒋锐, 陈阳, 于成信, 王晓飞, 朱德泉. 仿蟋蟀切齿叶减阻灭茬刀片设计与试验[J]. 工程设计学报, 2018, 25(4): 409-419.
[9] 章永华, 何建慧. 鳍条运动模式对仿生波动鳍推进力影响的研究[J]. 工程设计学报, 2017, 24(1): 89-99.
[10] 刘 伟,曹国忠,杜春云,侯晓婷,檀润华. 面向工程应用的生物信息系统化建模研究[J]. 工程设计学报, 2015, 22(2): 106-114.
[11] 刘 伟,曹国忠,郭德斌,邢锡金. 基于多元仿生的快速响应设计研究[J]. 工程设计学报, 2015, 22(1): 1-10.
[12] 贾 媛,刘晓敏,陈钰婷. 基于TRIZ和仿生技术的产品创新集成模型及其应用[J]. 工程设计学报, 2014, 21(6): 522-528.
[13] 何建慧, 章永华. 基于形状记忆合金驱动的仿生鲫鱼尾鳍的设计和分析[J]. 工程设计学报, 2012, 19(1): 9-15.
[14] 章永华, 何建慧, 颜 钦. 仿生机器鲫鱼的设计及运动学实验研究[J]. 工程设计学报, 2011, 18(3): 167-173.
[15] 鄢建辉, 汪久根. 带孔板仿生孔形状的强度设计[J]. 工程设计学报, 2003, 10(6): 355-357.