Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (5): 518-522,529    DOI: 10.3785/j.issn.1006-754X.2017.05.005
保质设计     
电压对压电板壳风力机叶片振动的抑制研究
乔印虎1, 韩江2, 张春燕1
1. 安徽科技学院 机械工程学院, 安徽 凤阳 233100;
2. 合肥工业大学 机械工程学院, 安徽 合肥 230009
Study on suppression of vibration of the piezoelectric plate shell wind turbine blade under voltage
QIAO Yin-hu1, HAN Jiang2, ZHANG Chun-yan1
1. School of Mechanical Engineering, Anhui Science and Technology University, Fengyang 233100, China;
2. School of Mechanical Engineering, Hefei University of Technology, Hefei 230000, China
 全文: PDF(955 KB)   HTML
摘要:

风力机叶片是风力机的关键部件,为了解决叶片受到阵风或随机风作用后振动衰减缓慢、叶片产生较大空间扭曲变形等问题,在叶片中嵌入压电材料,运用变分法、哈密顿(Hamilton)原理和扁壳理论,建立了压电板壳式复合材料叶片结构的机-电耦合动力学数学模型,并应用MATLAB软件对叶片在施加控制电压前后的响应特征进行了数值求解,根据计算结果分析了叶片各方向位移、转角随时间的变化和风载作用下控制电压对叶片振动的抑制情况。分析结果表明:施加控制电压前,叶片在受到阵风或随机风作用后,振动衰减缓慢,在给叶片中压电材料施加控制电压后,在压电材料的逆压电效应下,叶片的振动衰减迅速,在极端风速情况下能极大地提高风力机叶片的气动弹性稳定性。因此,采用压电材料,利用其逆压电效应,根据风载施加控制电压,能够有效抑制极端风载作用下叶片的振动,从而提高其服役周期。

关键词: 压电板壳风力机叶片控制电压风载作用逆压电效应振动抑制    
Abstract:

The blade is the key part of wind turbine, in order to solve the problems of slow vibration attenuation and large distortion of blade when the blade is subjected to gust or random wind, the piezoelectric material was embedded in the blade, and the variational method, Hamilton principle and shell theory were used. The electro-mechanical coupling dynamics model of wind turbine blade of composite shell was conducted, and the response characteristics of blade before and after applying the control voltage were calculated by using MATLAB software. According to the calculation results, the change of the displacement and angle of the blade with time and the suppression of the blade vibration by the control voltage under the wind load were analyzed. The results showed that the vibration of blade under gust wind or random wind attenuated slowly before applying voltage, but, when the control voltage was applied to piezoelectric material on the blade, the vibration of blade attenuated quickly because of the reverse piezoelectric effect of piezoelectric material, which could improve aeroelastic stability of the wind turbine blade great in extreme wind conditions. Therefore, the piezoelectric material can be used to suppress the vibration of blade under extreme wind load by using its converse piezoelectric effect and applying control voltage according to wind load so as to improve service life of wind turbine blade.

Key words: piezoelectric plate shell wind turbine blade    control voltage    wind load    reverse piezoelectric effect    vibration suppression
收稿日期: 2017-06-05 出版日期: 2017-10-28
CLC:  TH11  
基金资助:

安徽省科技厅2017年重点研究项目(1704a0902058);安徽省教育厅自然科学重大项目(KJ2017ZD44);安徽科技学院重点学科资助项目(AKZDXK2015C03);安徽科技学院稳定人才基金资助项目(JXWD201602);安徽科技学院校级一般项目(ZRC2016492)

作者简介: 乔印虎(1979-),男,安徽阜阳人,副教授,博士,从事风力机叶片研究,E-mail:qyh7926@163.com,http://orcid.org/0000-0002-7152-4624
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
乔印虎
韩江
张春燕

引用本文:

乔印虎, 韩江, 张春燕. 电压对压电板壳风力机叶片振动的抑制研究[J]. 工程设计学报, 2017, 24(5): 518-522,529.

QIAO Yin-hu, HAN Jiang, ZHANG Chun-yan. Study on suppression of vibration of the piezoelectric plate shell wind turbine blade under voltage[J]. Chinese Journal of Engineering Design, 2017, 24(5): 518-522,529.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.05.005        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I5/518

[1] 吴少华,孙绍增,李争起,等.水平浓缩煤粉燃烧器关键技术的试验研究[J].动力工程,1999,19(2):15-20. WU Shao-hua, SUN Shao-zeng, LI Zheng-qi, et al. Industrial experimental study of the key technique of horizontal bias combustion burners[J]. Power Engineering, 1999, 19(2):15-20.
[2] AN Y K, KIM M K, SOHN H. Piezoelectric transducers for assessing and monitoring civil infrastructures[J]. Sensor Technologies for Civil Infrastructures, 2014, 1:86-120.
[3] HUH Y H, KIM J I, LEE J H, et al. Application of PVDF film sensor to detect early damage in wind turbine blade components[J]. Procedia Engineering, 2011, 10(7):3304-3309.
[4] KIM Sang-woo, KIM Eun-ho, JEONG Min-soo, et al. Damage evaluation and strain monitoring for composite cylinders using tin-coated FBG sensors under low-velocity impacts[J]. Composites Part B:Engineering, 2015, 74:13-22.
[5] FU T, LIU Y, LAU K T, et al. Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors[J]. Composites Part B:Engineering, 2014, 66(4):420-429.
[6] SUNDARESAN M J, PAI P F, GHOSHAL A, et al. Methods of distributed sensing for health monitoring of composite material structures[J]. Composites Part A:Applied Science & Manufacturing, 2001, 32(9):1357-1374.
[7] LI Ying-hui, LI Liang, LIU Qi-kuan, et al. Dynamic characteristics of lag vibration of a wind turbine blade[J]. Acta Mechanica Solida Sinica, 2013, 26(6):592-603.
[8] STAINO, BASU B. Dynamics and control of vibrations in wind turbines with variable rotor speed[J]. Engineering Structures, 2013, 56(6):58-67.
[9] WOUDE C V D, NARASIMHAN S. A study on vibration isolation for wind turbine structures[J]. Engineering Structures, 2014, 60:223-234.
[10] LAGO L, PONTA F L, OTERO A D. Analysis of alternative adaptive geometrical configurations for the NREL-5 MW wind turbine blade[J]. Renewable Energy, 2013(59):13-22.
[11] HERATH M T, LEE A K L, PRUSTY B G. Design of shape-adaptive wind turbine blades using differential stiffness bend-twist coupling[J]. Ocean Engineering, 2015(95):157-165.
[12] PONTA F L, OTERO A D, RAJAN A, et al. The adaptive-blade concept in wind-power applications[J]. Energy for Sustainable Development, 2014(22):3-12.
[13] SIAVASH T, MASOUD M, ASGHAR S, et al. Experimental investigation of the effects of various plasma actuator configurations on lift and drag coefficients of a circular cylinder including the effects of electrodes[J]. Chinese Journal of Aeronautics, 2012, 25(3):311-324.
[14] JUKES T N. Smart control of a horizontal axis wind turbine using dielectric barrier discharge plasma actuators[J]. Renewable Energy, 2015(80):644-654.
[15] MACQUART T, MAHERI A. Integrated aeroelastic and control analysis of wind turbine blades equipped with microtabs[J]. Renewable Energy, 2015(75):102-114.
[16] ZHANG Ming-ming, YU Wei, XU Jian-zhong. Aerodynamic physics of smart load control for wind turbine due to extreme wind shear[J]. Renewable Energy, 2014(70):204-210.
[17] ZHONG Z, SHANG E T. Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate[J]. International Journal of Solids and Structures, 2003, 40(20):5335-5352.
[18] 岳洪浩.精密柔性抛物壳智能结构系统及其主动控制研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2009:3,29-33. YUE Hong-hao. Research of an active control of precision smart flexible paraboloidal shell systems[D]. Harbin:Harbin Institute of Technology, School of Mechatronics Engineering, 2009:3, 29-33.
[19] 乔印虎,韩江,刘春辉,等.智能夹层风力机叶片振动主动控制研究[J].太阳能学报,2012,33(2):185-188. QIAO Yin-hu, HAN Jiang, LIU Chun-hui, et al. Active vibration control of wind turbine blade with intelligent sandwich structure[J]. Acta Energiae Solaris Sinica, 2012, 33(2):185-188.
[20] MEITZLER A H, TIERSTEN H F, WARNE A W, et al. IEEE Standard on piezoelectricity. ANSI/IEEE:Std 176-1987[S]. New York:The Institute of Electrical and Electronics Engineers, Inc,1996:7-17.
[21] 李哲,王贡献,胡吉全,等.瑞利阻尼系数确定方法对岸桥结构地震反应的影响研究[J].武汉理工大学学报,2014,36(10):94-98. LI Zhe, WANG Gong-xian, HU Ji-quan, et al. Study of influence of different methods for calculating rayleigh damping coefficient on container cranes seismic response[J]. Journal of Wuhan University of Technology, 2014, 36(10):94-98.
[1] 杨宇涛, 祝锡晶, 张青青, 刘泽宇. 多级柔性壁声衬设计及其消声性能研究[J]. 工程设计学报, 2018, 25(5): 518-524.