Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (3): 287-298    DOI: 10.3785/j.issn.1006-754X.2019.03.007
优化设计     
基于冲蚀磨损理论的新型内防喷器阀座锥角研究
张晓东, 陈龙
西南石油大学 机电工程学院, 四川 成都 610500
Research on valve seat cone angle of new inner blowout preventer based on erosion wear theory
ZHANG Xiao-dong, CHEN Long
College of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(8350 KB)   HTML
摘要:

针对现有内防喷器失效率高等不足,提出一种结构新颖且密封可靠的自旋合式锥形密封内防喷器。对该新型内防喷器的阀座锥角进行了力学分析,并采用MATLAB对阀座锥角进行了优化。基于理论分析得到的结论,采用CFD(computational fluid dynamics,计算流体动力学)方法(标准k-ε湍流模型及Tabakoff-Grant冲蚀模型)及ANSYS CFX软件,对该新型内防喷器在不同钻井液流量及不同阀座锥角下的流场进行数值模拟分析,仿真结果表明容易发生冲蚀磨损的部位主要集中在上下阀座流道边缘及下部管壁处。通过对比多组仿真数据,提出了该新型内防喷器上下阀座的最优锥角为25°,并采用ANSYS Workbench静力学分析软件模拟了井喷时上下阀座密封锥面的接触应力分布,验证了冲蚀仿真分析得出的最优锥角的结论。样机试制后进行了密封性实验以验证其可靠性,结果表明该新型内防喷器无泄漏,满足密封性要求。研究结论为内防喷器的设计与改进提供了重要的理论依据,对油田生产设备的安全升级有重要意义。

关键词: 内防喷器锥形密封冲蚀数值模拟阀座锥角    
Abstract:

In view of the shortcomings of high failure rate of inner blowout preventer (BOP), a self-screwing conical seal inner BOP with novel structure and reliable sealing was presented. The valve seat cone angle of the new inner BOP was mechanically analyzed, and the valve seat cone angle was optimized by MATLAB. The numerical simulation analysis of internal flow field in the inner BOP was performed under different drilling fluid flows and valve seat cone angles by computational fluid dynamics (CFD) method (standard k-ε turbulence model and Tabakoff-Grant erosion model)and ANSYS CFX software based on the theoretical analysis conclusions. It was revealed that the parts of the erosion and wear were mainly concentrated on the edge of upper and lower valve seats and the lower wall. By comparing multiple groups of simulation data, it was determined that the optimal cone angle of the upper and lower seats of the inner BOP was 25°. ANSYS workbench static analysis software was used to simulate the contact stress distribution on the seal cone of upper and lower valve seats when the blowout occurred, and the conclusion of the optimal cone angle obtained from the erosion simulation analysis was verified. After the prototype was made, the sealing test was carried out to verify the reliability of the new inner BOP. The test results showed that the new inner BOP had no leakage and met the sealing requirements. The conclusion provides an important theoretical basis for the design and improvement of this type of inner BOP, which is of great significance for the safety upgrade of oilfield production equipment.

Key words: inner blowout preventer (BOP)    conical sealing    erosion    numerical simulation    valve seat cone angle
收稿日期: 2018-06-19 出版日期: 2019-06-28
CLC:  TE 931.2  
基金资助:

国家自然科学基金优秀青年科学基金资助项目(51222406)

作者简介: 张晓东(1959—),男,重庆涪陵人,教授,博士生导师,硕士,从事油气井钻探设备设计理论及技术等研究,E-mail:Zxd123420@126.com,https://orcid.org/0000-0001-9605-1379
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张晓东
陈龙

引用本文:

张晓东, 陈龙. 基于冲蚀磨损理论的新型内防喷器阀座锥角研究[J]. 工程设计学报, 2019, 26(3): 287-298.

ZHANG Xiao-dong, CHEN Long. Research on valve seat cone angle of new inner blowout preventer based on erosion wear theory. Chinese Journal of Engineering Design, 2019, 26(3): 287-298.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.03.007        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I3/287

1 ZHANGJian-nuo. Blowout prevention system with drill string [J]. China Petroleum Machinery, 1990,18(3): 1-3,11.
2 The Great Wall Drilling Well Control Training Center, Liaohe Oilfield Well Control Training Center. Drilling well control technology and equipment[M]. Beijing: Petroleum Industry Press, 2012: 27-34.
3 XIEJuan, WANGDe-yu, LIYue-qin, et al. Present situation and research direction of drill string internal blowout prevention tools [J]. Machinery, 2007, 34(10): 4-6.
4 CHENHao, WANGChang-jiang, WUZhen, et al. Working mechanism and failure analysis of check valves of BOP(blowout preventer) system in drilling string for safe drilling [J]. Natural Gas Industry, 2010, 30(6): 69-72,129-130.
5 ZHOUZheng-gui. Basic theory and practical application of computational fluid mechanics [M]. Nanjing: Southeast University Press, 2018: 78-85.
6 ROACHP J. Computational fluid Mechanics [M]. Translated by ZHONG Xi-chang, LIU Xue-zong. Beijing: Science Press, 1983: 46-53.
7 ZHUHong-jun, LINYuan-hua, XIELong-han. Practical course on FLUENT fluid analysis and simulation[M]. Beijing: Posts and Telecom Press, 2010: 67-83.
8 SUNHai-jiang, Guo-fuOU , XIAODing-hao, et al. Numerical study on erosion and wear of multi-phase flow of coal-liquefied multiphase flow [J]. Fluid machinery, 2013, 41(8): 45-47, 71.
9 IncANSYS . ANSYS FLUENT 13.0 user’s guild [Z/OL]. [2018-06-19]. https://max.book118.com/html/2017/ 0628/118585639.shtm
10 ZHANGJi-xin, FANJian-chun, ZHANXian-jue. et al. Research on the erosion wear characteristics of 42CrMo steel in hydraulic fracture conditions [J].China Petroleum Machinery, 2012, 40(4): 100-103.
11 FORDERA, THEWM, HARRISOND. A numerical investigation of solid particle erosion experienced within oilfield control valves[J]. Wear, 1998, 216(2):184-193. doi:10.1016/s0043-1648(97)00217-2
12 LIBin, ZHANGQiang. Erosion characteristics analysis for bypass valve of positive displacement motor based on CFD[J]. Coal Engineering, 2017, 49(7): 132-135.
13 ZHUJun-long, DUANMeng-lan, YETian-yuan, et al. Numerical analysis of multiphase erosion of subsea X-tree production line [J]. China Petroleum Machinery, 2016, 44(3): 58-62.
14 DINGKuang, ZHUHong-wu, ZHANGJian-hua, et al. Erosion wear analysis of solid particles in liquid-solid two-phase flow of right-angle bend pipe[J]. Oil-gas Storage and Transportation, 2013, 32(3): 241-246.
15 LIUHong-bin, HaoMOU . Study on erosion wear of fracturing pipe caused by solid proppant in sand fracturing[J]. Journal of Safety Science and Technology, 2018, 14(1): 87-94.
16 LIANGGuang-chuan, NIEChang, LIUQi, et al. Erosion-corrosion analysis of oil pipeline elbow based on FLUENT[J].Corrosion and Protection, 2013, 34(9): 822-824, 830.
17 ZHENGZ J, OU G F, YEH J, et al. Investigation on failure process and structural optimization of a high pressure letdown valve[J]. Engineering Failure Analysis, 2016, 66(3): 223-239.doi:10.1016/j.engfailanal.2016.04.023
18 LUQ Q, FONTAINEJ R, AUBERTING. A lagrangian model for solid particles in turbulent flows[J]. Multiphase Flow, 1993, 19(2): 347-367. doi:10.1016/0301-9322(93)90008-I
19 YANJia. The analysis and design for new structure of arrow-shape check valve used in nitrogen drilling[D]. Chengdu: Southwest Petroleum University, College of Mechanical and Electrical Engineering, 2013: 53-54.

[1] 熊伟, 葛志华, 庞乔, 李曼迪, 王友. 轮毂轴承单元过盈量理论设计及试验研究[J]. 工程设计学报, 2021, 28(1): 41-47.
[2] 章亦聪, 朱玮, 吴玉国, 时礼平. 莱洛三角形微孔织构化端面密封性能数值模拟[J]. 工程设计学报, 2020, 27(1): 103-110.
[3] 侯勇俊, 李芬, 吴先进, 刘有平. 负压钻井液振动筛气液喷射器性能的数值模拟研究[J]. 工程设计学报, 2019, 26(4): 423-432.
[4] 钟功祥, 邹迪, 张兴. 基于CFD与ADAMS的三角转子气动机设计与仿真[J]. 工程设计学报, 2019, 26(3): 305-314.
[5] 王志敏, 武美萍, 魏晶晶. 磨料水射流对脆性材料的冲蚀研究[J]. 工程设计学报, 2019, 26(1): 79-86.
[6] 祝效华, 范诚, 刘上. 新型液动冲击器液固两相流冲蚀数值模拟[J]. 工程设计学报, 2019, 26(1): 87-94.
[7] 李舜酩, 王一博, 顾信忠. 基于流场分析的某割草车节能优化设计[J]. 工程设计学报, 2018, 25(6): 683-689.
[8] 张园, 彭振华, 高定祥, 任海涛, 唐一鑫. 芯管式稠油掺稀混合器设计及其掺混性能研究[J]. 工程设计学报, 2018, 25(5): 510-517.
[9] 邓嵘, 侯凯, 李孟华, 李向东. 混合式单牙轮钻头破岩性能研究[J]. 工程设计学报, 2018, 25(3): 262-269.
[10] 向正新, 李思行, 钱利勤, 夏成宇, 涂忆柳. 压裂球座冲蚀磨损规律研究和结构优化[J]. 工程设计学报, 2017, 24(5): 555-562.
[11] 张露, 武鹏, 吴大转, 洪伟荣. 燃油系统旋涡泵压力脉动的控制研究[J]. 工程设计学报, 2017, 24(4): 395-402.
[12] 杨伟杰, 孟文俊, 邬思敏, 刘宝林, 齐向东. 新型铁路隧道落煤吸尘装置吸煤特性仿真分析与试验验证[J]. 工程设计学报, 2017, 24(2): 174-181.
[13] 夏 丽,武 鹏,吴大转. 蜗壳回流孔对自吸泵性能的影响[J]. 工程设计学报, 2015, 22(3): 284-289.
[14] 朱桂华,马凯,唐啸,高明泉,朱宏斌. 错位桨对污泥固液两相流混合的数值模拟[J]. 工程设计学报, 2015, 22(1): 49-53.
[15] 马姗,王发展,王博,王欣,吴振,王哲. 机械搅拌自吸式浮选机气-液-固三相流场的数值研究[J]. 工程设计学报, 2014, 21(1): 62-67.