Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (1): 87-94    DOI: 10.3785/j.issn.1006-754X.2019.01.012
建模、仿真、分析与决策     
新型液动冲击器液固两相流冲蚀数值模拟
祝效华, 范诚, 刘上
西南石油大学 机电工程学院, 四川 成都 610500
Liquid-solid two-phase flow erosion numerical simulation of neo-type hydraulic impactor
ZHU Xiao-hua, FAN Cheng, LIU Shang
School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(2777 KB)   HTML
摘要:

针对液动冲击器在泥浆钻进过程中因冲蚀严重而无法实现工业化应用的问题,从结构创新角度设计了一种抗冲蚀的新型液动冲击器。以液固两相流动力学和冲蚀理论为基础,建立液动冲击器冲蚀模型,采用拉格朗日粒子追踪算法计算固相颗粒运动轨迹,基于液动冲击器内部流场分析预测冲击器冲蚀区域分布、颗粒冲击速度对主要零件(冲锤、上套筒和外壳)冲蚀的影响及其工作寿命。由数值模拟结果可知:冲蚀区域主要集中在冲锤上腔的底面、冲锤边角处、流道孔进口壁面、上套筒呼吸孔进口处以及上部壁面;冲锤、上套筒和外壳的平均冲蚀率与冲击速度呈幂函数关系,速度因子在1~4之间;根据对比分析可知,新型冲击器关键零部件的耐冲蚀寿命与现有冲击器射流元件相比有明显提升。研究工作对推动新型液动冲击器工业化应用有较为重要的参考价值。

关键词: 钻井液动冲击器冲蚀流场分析    
Abstract:

Aiming at the problem that the hydraulic impactor cannot be industrialized because of serious erosion during mud drilling, a neo-type hydraulic impactor for anti-erosion was designed from the point of structural innovation. Based on the liquid-solid two-phase flow dynamics and erosion theory, the hydraulic impactor erosion model was established. The Lagrange tracing algorithm was applied to calculate the movement trajectory of solid particles, and the distribution of erosion area, the influence of particle impact velocity on erosion of the main working elements (impact hammer, upper sleeve and shell) and their working life were predicted based on the inner velocity distribution analysis of neo-type hydraulic impactor. According to numerical simulation results, the erosion area was concentrated on the bottom of upper chamber of hammer,impact hammer corner,inlet wall of the orifice,inlet of the flow channel hole in piston upper chamber and upper wall in upper sleeve. Power function relationship was identified with tool average erosion rate and impact velocity with velocity factor of 1-4. Theoretical anti-erosion life of key working elements of neo-type impactor had an obvious improvement under comparative analysis of existing impactor. The research work has important reference value for promoting the industrial application of the neo-type hydraulic impactor.

Key words: drilling    hydraulic impactor    erosion    flow field analysis
收稿日期: 2018-01-12 出版日期: 2019-02-28
CLC:  TE921  
基金资助:

国家自然科学基金资助项目(51674214);四川省青年科技创新团队项目(2017TD0014)

作者简介: 祝效华(1978-),男,山东曹县人,教授,博士,从事油气井管柱力学、岩石破碎学和井下工具等研究,E-mail:zxhth113@163.com,https://orcid.org/0000-0002-0507-3773
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
祝效华
范诚
刘上

引用本文:

祝效华, 范诚, 刘上. 新型液动冲击器液固两相流冲蚀数值模拟[J]. 工程设计学报, 2019, 26(1): 87-94.

ZHU Xiao-hua, FAN Cheng, LIU Shang. Liquid-solid two-phase flow erosion numerical simulation of neo-type hydraulic impactor. Chinese Journal of Engineering Design, 2019, 26(1): 87-94.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.01.012        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I1/87

[1] 沈建中,贺庆,韦忠良,等.YSC-178型液动射流冲击器在旋冲钻井中的应用[J].石油机械,2011,39(6):52-54. SHEN Jian-zhong, HE Qing, WEI Zhong-liang, et al. Application of YSC-178 hydraulic jet impactor in rotary percussion drilling[J]. China Petroleum Machinery, 2011, 39(6):52-54.
[2] 李博.阀式双作用液动冲击器的仿真[D].北京:中国地质大学工程技术学院,2013:19-20. LI Bo. The simulation of double-acting impactors[D]. Beijing:China University of Geosciences, School of Engineering and Technology, 2013:19-20.
[3] 刘国经,朱乃正,王有群.射吸式冲击器:CN1005785B[P].1989-11-15. LIU Guo-jing, ZHU Nai-zheng, WANG You-qun. Jet-suck impactor:CN1005785B[P]. 1989-11-15.
[4] 丁代坡.石油钻井冲击器关键零部件工作寿命的研究[D].长春:吉林大学建设工程学院,2008:63. DING Dai-po. Research on the working life of key accessory of oil drilling impacting machine[D]. Changchun:Jilin University, College of Construction Engineering, 2008:63.
[5] 李伟涛.液动锤射流元件工作寿命试验研究[D].长春:吉林大学建设工程学院,2004:35-47. LI Wei-tao. The experiment and research on the working life of the liquid jet amplifier of the hydraulic hammer[D]. Changchun:Jilin University, College of Construction Engineering, 2004:35-47.
[6] 张春艳.液动冲击锤活塞缸套仿生耐冲蚀磨损研究[D].长春:吉林大学生物与农业工程学院,2013:35-62. ZHANG Chun-yan. Research on erosion abrasion resistance properties of hydraulic impact hammer piston-liner by bio-inspired method[D]. Changchun:Jilin University, College of Biological and Agricultural Engineering, 2013:35-62.
[7] 蔺刚,殷琨,徐克里.钻井用射流式液动冲击器防空打机构改型设计[J].石油机械,2007,35(5):23-24. LIN Gang, YIN Kun, XU Ke-li. Anti-ineffectiveness operating model change for hydraulic jet impactor in drilling[J]. China Petroleum Machinery, 2007, 35(5):23-24.
[8] 刘志刚.正作用型液动冲击器寿命的研究[J].地质与勘探,1993,29(6):54-58. LIU Zhi-gang. The lifetime of positive action type hydraulic percussive device[J]. Geology and Exploration, 1993, 29(6):54-58.
[9] 彭枧明,柳鹤,赵志强,等.YSC178A型液动锤射流元件底盖板外壁冲蚀机理[J].吉林大学学报(地球科学版),2010,40(5):1140-1144. PENG Jian-ming, LIU He, ZHAO Zhi-qiang, et al. Erosion mechanism on outer wall of bottom plate of fluidic element for YSC178A liquid-jet hammer[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(5):1140-1144.
[10] ZHANG J, KANG J, FAN J, et al. Research on erosion wear of high-pressure pipes during hydraulic fracturing slurry flow[J]. Journal of Loss Prevention in the Process Industries, 2016, 43:438-448.
[11] SHAH S N, JAIN S. Coiled tubing erosion during hydraulic fracturing slurry flow[J]. Wear, 2004, 264(3/4):279-290.
[12] 祝效华,刘少胡,童华.气体钻井钻杆冲蚀规律研究[J].石油学报,2010,31(6):1013-1017. ZHU Xiao-hua, LIU Shao-hu, TONG Hua. A study on the drill pipe erosion law in gas drilling[J]. Acta Petrolei Sinica, 2010, 31(6):1013-1017.
[13] 王国荣,楚飞,陶思宇,等.控压钻井节流阀液-固两相流冲蚀预测及验证[J].石油学报,2015,36(6):754-759. WANG Guo-rong, CHU Fei, TAO Si-yu, et al. Prediction and verification on liquid-solid two-phase flow erosion of managed pressure drilling throttle valve[J]. Acta Petrolei Sinica, 2015, 36(6):754-759.
[14] 祝效华,刘上.一种往复冲击潜孔锤钻井工具:2014101781319[P].2014-04-30. ZHU Xiao-hua, LIU Shang. A reciprocating impact DTH hammer drilling tool:2014101781319[P]. 2014-04-30.
[15] BOZZINI B, RICOTTI M E, BONIARDI M, et al. Evaluation of erosion-corrosion in multiphase flow via CFD and experimental analysis[J]. Wear, 2003, 255(1/6):237-245.
[16] 巴彬.气体钻井中下部钻具冲蚀失效研究[D].成都:西南石油大学石油与天然气工程学院,2016:12-13. BA Bin. Erosion failure analysis for gas drilling bottom hole[D]. Chengdu:Southwest Petroleum University, School of Petroleum Engineering, 2016:12-13.
[17] FERZIGER J H, PERIC M. Computational methods for fluid dynamics[J]. Physics Today, 1997, 50(3):80-84.
[18] ZHANG J, KANG J, FAN J, et al. Study on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industry[J]. Journal of Natural Gas Science & Engineering, 2016, 32:334-346.
[19] 邵荷生,曲敬信,许小棣.摩擦与磨损[M].北京:煤炭工业出版社,1992:281-282. SHAO He-sheng, QU Jing-xin, XU Xiao-di. Friction and wear[M]. Beijing:China Coal Industry Publishing House, 1992:281-282.
[20] 黄雪琴,孟庆昆,郑晓峰.液动冲击器发展现状及在油气钻井应用探讨[J].石油矿场机械,2016,45(9):62-66. HUANG Xue-qin, MENG Qing-kun, ZHENG Xiao-feng. Development status of hydro-hammers and application of hydro-hammers in oil and gas well drilling[M]. Oil Field Equipment, 2016, 45(9):62-66.

[1] 张晓东, 陈龙. 基于冲蚀磨损理论的新型内防喷器阀座锥角研究[J]. 工程设计学报, 2019, 26(3): 287-298.
[2] 王志敏, 武美萍, 魏晶晶. 磨料水射流对脆性材料的冲蚀研究[J]. 工程设计学报, 2019, 26(1): 79-86.
[3] 杨行, 夏成宇, 钱利勤, 涂忆柳, 孙巧雷, 王鹏. 一种新型多级可变径稳定器工作机理研究[J]. 工程设计学报, 2017, 24(6): 710-716.
[4] 向正新, 李思行, 钱利勤, 夏成宇, 涂忆柳. 压裂球座冲蚀磨损规律研究和结构优化[J]. 工程设计学报, 2017, 24(5): 555-562.
[5] 王杰, 夏成宇, 冯定, 于长柏. 新型涡轮驱动水力振荡器设计与实验研究[J]. 工程设计学报, 2016, 23(4): 391-395,400.