Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (1): 79-86    DOI: 10.3785/j.issn.1006-754X.2019.01.011
建模、仿真、分析与决策     
磨料水射流对脆性材料的冲蚀研究
王志敏1, 武美萍1,2, 魏晶晶1
1. 江南大学 机械工程学院, 江苏 无锡 214122;
2. 江苏省食品先进制造装备技术重点实验室, 江苏 无锡 214122
Study on erosion of abrasive water jet on brittle materials
WANG Zhi-min1, WU Mei-ping1,2, WEI Jing-jing1
1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China
 全文: PDF(1619 KB)   HTML
摘要:

磨料水射流技术作为一种特种加工技术,具有无刀具接触、无热影响区和加工范围广等优势,在众多领域得到应用。为了探究磨料水射流对脆性材料的冲蚀效果,构建和设计了磨料水射流外流场冲蚀仿真模型与磨料水射流冲蚀实验。以30 mm×50 mm的喷嘴外流场域为计算域,建立磨料水射流冲蚀仿真模型,并分析射流冲蚀过程中压力分布、水与磨料的速度分布及它们在射流中心线上的衰减规律。通过对氧化铝陶瓷材料的冲蚀实验,分析工艺参数对冲蚀孔径的影响,并结合仿真结果对比分析了射流束宽度与冲蚀孔径的关系。结果表明:水的速度随着喷嘴距离的增大而减小且分布范围变宽,射流宽度呈线性增大,磨料速度随喷嘴距离的增大而减小且分布范围基本不变;射流中心线上水的速度与磨料速度呈三段式衰减,水的第1段速度衰减段长度比磨料的长,但水的第2段速度衰减段长度比磨料的短;射流束能量的有效利用部分逐渐减小,但在15~25 mm的靶距范围内其有效利用部分较稳定,为40%;冲蚀孔径随喷嘴距离增大呈线性增大。研究结果为磨料水射流切割、铣削及抛光加工的参数选择提供实验依据,同时为磨料水射流加工过程仿真提供参考。

关键词: 磨料水射流冲蚀性能速度分布衰减冲蚀孔径    
Abstract:

Abrasive water jet technique is a special process popularized and applied in many fields due to its advantages like no tool contact, no heat-affected zone and high machining versatility, etc. In order to investigate the erosion effect on brittle materials, the erosion simulation model of abrasive water jet at outer flow field and abrasive water jet erosion experiment were designed. The abrasive water jet erosion simulation model was set up based on the 30 mm×50 mm outer flow field of the nozzle. The distribution of pressure, velocity of water and abrasive and their attenuation law on the center line of jet in the erosion process were fully analyzed. Through the erosion test of alumina ceramic material, the influence of process parameters on the erosion hole diameter was analyzed as well. Combining with the simulation results, the relationship between jet beam width and erosion hole diameter was compared and analyzed. The results indicated that the water velocity decreased with the increase of nozzle distance and the distribution range became wider, and the width of jet increased linearly. The abrasive velocity decreased with the increase of nozzle distance while the distribution width was almost unchanged. The velocity of water and abrasive on the center-line of jet showed three-stage attenuation. During the first stage, the length of the velocity attenuation section of water was longer than that of abrasive, but during the second one, the length of the velocity attenuation section of water was shorter than that of abrasive. In addition, the effective utilization of jet energy decreased gradually. However, in the target range of 15~25 mm, the effective utilization part was more stable at around 40%, and the erosion hole diameter increased linearly with the nozzle distance increasing. The research results can provide experimental basis for the parameter selection of abrasive water jet cutting, milling and polishing, and provide reference for the simulation of abrasive water jet machining.

Key words: abrasive water jet    erosion performance    velocity distribution    attenuation    erosion hole diameter
收稿日期: 2018-01-23 出版日期: 2019-02-28
CLC:  TH16  
基金资助:

国家自然科学基金资助项目(51575237);装备预研教育部联合基金资助项目(62501036035)

通讯作者: 武美萍(1970-),女,山西太原人,教授,博士,从事复杂装备智能化设计与制造研究,E-mail:80485048@qq.com     E-mail: 80485048@qq.com
作者简介: 王志敏(1992-),男,安徽宿州人,硕士生,从事射流加工技术研究,E-mail:wangzm7906@163.com,https://orcid.org//0000-0001-6308-7703
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王志敏
武美萍
魏晶晶

引用本文:

王志敏, 武美萍, 魏晶晶. 磨料水射流对脆性材料的冲蚀研究[J]. 工程设计学报, 2019, 26(1): 79-86.

WANG Zhi-min, WU Mei-ping, WEI Jing-jing. Study on erosion of abrasive water jet on brittle materials. Chinese Journal of Engineering Design, 2019, 26(1): 79-86.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.01.011        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I1/79

[1] PARIKH P J, LAM S S. Parameter estimation for abrasive water jet machining process using neural networks[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(5):497-502.
[2] KECHAGIAS J, PETROPOULOS G, VAXEVANIDIS N. Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(5/8):635-643.
[3] JUNKAR M, JURISEVIC B, FAJDIGA M, et al. Finite element analysis of single-particle impact in abrasive water jet machining[J]. International Journal of Impact Engineering, 2006, 32(7):1095-1112.
[4] KUMAR N, SHUKLA M. Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy[J]. Journal of Computational and Applied Mathematics, 2012, 236(18):4600-4610.
[5] AHMED D H, NASER J, DEAM R T. Particles impact characteristics on cutting surface during the abrasive water jet machining:numerical study[J]. Journal of Materials Processing Technology, 2016, 232(1):116-130.
[6] WANG J, NA G, GONG W. Abrasive waterjet machining simulation by SPH method[J]. International Journal of Advanced Manufacturing Technology, 2010, 50(1/4):227-234.
[7] FENG Y, WANG J, LIU F. Numerical simulation of single particle acceleration process by SPH coupled FEM for abrasive waterjet cutting[J]. Journal of Shandong University, 2012, 59(1/4):193-200.
[8] NIE B, MENG J, JI Z. Numerical simulation on flow field of pre-mixed abrasive water jet nozzle[C]//2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing, Beijing, Oct. 10-12, 2008.
[9] 孙艳斌,关砚聪,宋金来,等.磨料水射流切割YW1硬质合金深度预测模型[J].硬质合金,2016,33(4):223-229. SUN Yan-bin, GUAN Yan-cong, SONG Jin-lai, et al. Research on depth prediction model of AWJ cutting hard alloy YW1[J]. Cemented Carbide, 2016, 33(4):223-229.
[10] 刘力红,曹寒冰.基于Fluent的前混合磨料水射流高压管道流场的数值模拟[J].长春理工大学学报(自然科学版),2014,37(5):77-80. LIU Li-hong, CAO Han-bing. Numerical simulation of high pressure pipeline flow field in pre-mixed abrasive water jet with fluent[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2014, 37(5):77-80.
[11] DEAM R T, LEMMA E, AHMED D H. Modelling of the abrasive water jet cutting process[J]. Wear, 2004, 257(9):877-891.
[12] 龙新平,刘琦,阮晓峰,等.后混式磨料射流喷嘴内部流场模拟及分析[J].排灌机械工程学报,2016,34(8):686-692. LONG Xin-ping, LIU Qi, RUAN Xiao-feng, et al. Numerical analysis of the internal flow of abrasive entrained waterjet nozzle[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(8):686-692.
[13] 左伟芹,王晓川,郝富昌,等.基于迭代算法的磨料颗粒加速机制研究[J].中国石油大学学报(自然科学版),2016,40(4):104-109. ZUO Wei-qin, WANG Xiao-chuan, HAO Fu-chang, et al. Research on acceleration mechanism of abrasive in pre-mixed abrasive water-jet based on iterative algorithm[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(4):104-109.
[14] DEEPAK D, CORNELIO J A Q, ABRAHAM M M, et al. Numerical analysis of the effect of nozzle geometry on flow parameters in abrasive water jet machines[J]. Pertanika Journal of Science & Technology, 2017, 25(2):497-506.
[15] 王志阳,王凯.基于FLUENT的磨料水射流抛光喷嘴的流场仿真[J].中国设备工程,2017(9):101-103. WANG Zhi-yang, WANG Kai. Abrasive water jet flow field simulation of polishing nozzles based on FLUENT[J]. China Plant Engineering, 2017(9):101-103.
[16] 王福军.计算流体动力学[M].北京:清华大学出版社,2004:54-57. WANG Fu-jun. Computational fluid dynamics[M]. Beijing:Tsinghua University Press, 2004:54-57.
[17] 唐家鹏.FLUENT14.0超级学习手册[M].北京:人民邮电出版社,2013:30-39. TANG Jia-peng. FLUENT14.0 super study manual[M]. Beijing:People Post Press, 2013:30-39.
[18] PRISCO U, D'ONOFRIO M C. Three-dimensional CFD simulation of two-phase flow inside the abrasive water jet cutting head[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2008, 9(5):300-319.

[1] 朱桂华,马凯,唐啸,高明泉,朱宏斌. 错位桨对污泥固液两相流混合的数值模拟[J]. 工程设计学报, 2015, 22(1): 49-53.