Please wait a minute...
工程设计学报  2016, Vol. 23 Issue (5): 444-452    DOI: 10.3785/j.issn.1006-754X.2016.05.007
建模、分析、优化和决策     
基于权重比的车架多工况拓扑优化方法研究
邱瑞斌, 雷飞, 陈园, 王琼
湖南大学 机械与运载工程学院, 湖南 长沙 410082
Research on the method of multi-case topology optimization of frame structure based on the weight ratio
QIU Rui-bin, LEI Fei, CHEN Yuan, WANG Qiong
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
 全文: PDF(2719 KB)   HTML
摘要:

在赛车实际行驶过程中车架会受到各种工况的考验,因此在进行车架结构拓扑优化设计时必须同时考虑多个工况下车架的拓扑优化结果.然而,在进行多工况下拓扑结构设计时往往会遇到如何分配各个工况权重比的问题,各工况权重比的分配直接影响车架最终的拓扑结构.针对此问题进行研究,通过构造代理模型并利用遗传算法寻找最佳权重比.首先,采用折衷规划法建立同时考虑多个工况下车架刚度的拓扑优化综合目标函数模型;接着,采用最优拉丁超立方试验设计方法采样,构造径向基函数代理模型,并在代理模型的基础上利用NSGA-II进行求解,得到各个工况最佳权重比;最后,将获得的各个工况最佳权重比代入综合目标模型中进行拓扑计算,获得同时考虑各工况下车架刚度的拓扑结构.将该方法与获得权重比常用的层次分析法(AHP)和正交试验法(OED)进行比较,该方法较其他两种方法得到的综合目标值是最优的,车架所有工况的加权柔度是最低的.结果表明,所提出的方法很好地解决了多工况下拓扑优化权重比分配的问题,并且较其他方法具有明显的优越性.

关键词: 权重比代理模型遗传算法车架拓扑优化    
Abstract:

The frame will be subject to the test of various conditions in the actual moving conditions. So a plurality of topology results under every condition must be considered when conducting topology optimization of the frame structure. While there is a common issue during the process of multi-case topology optimization about how to determine the weight ratio of respective condition and the final topology results of the frame depend directly on this distribution. This issue was showed a further study and a feasible solution to this problem with a combination of surrogate model and genetic algorithm was gaved. At first, a comprehensive object function maximizing the static stiffness under multi-case was defined by using compromise programming approach. And then, a Radial Basis Function surrogate model was constructed by using optimal Latin Hypercube Sampling, meanwhile, optimal weight ratios of every load condition had been obtained with the method of combining surrogate model with NSGA-II. At last, the optimal weight ratios obtained in the previous process were applied into the object function and a feasible topology result of the frame structure was got which had considered multi-case loads. Moreover, the contrastive study was carried out to compare the comprehensive objective optimization approach proposed in this study with those that determined the weight ratio by analytic hierarchy process (AHP) or orthogonal experimental design (OED). Compared with the other two methods, this method had the lowest value of comprehensive objective function and the weighted compliance of all conditions was also the lowest. Results show that the method proposed in this paper is a good solution to obtain weight ratio of every condition in the process of topology optimization of a frame and is superior to reference methods.

Key words: weight ratio    surrogate model    genetic algorithm    frame    topology optimization
收稿日期: 2016-01-27 出版日期: 2016-10-28
CLC:  U462  
基金资助:

国家自然科学基金资助项目(11232004).

通讯作者: 雷飞(1981-),男,河南南阳人,讲师,博士,从事汽车轻量化研究,E-mail:leifeihun@163.com.     E-mail: leifeihun@163.com
作者简介: 邱瑞斌(1989-),男,江苏徐州人,硕士,从事汽车轻量化研究,E-mail:ruibinqiu@hnu.edu.cn.http://orcid.org//0000-0003-2215-3297
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邱瑞斌
雷飞
陈园
王琼

引用本文:

邱瑞斌, 雷飞, 陈园, 王琼. 基于权重比的车架多工况拓扑优化方法研究[J]. 工程设计学报, 2016, 23(5): 444-452.

QIU Rui-bin, LEI Fei, CHEN Yuan, WANG Qiong. Research on the method of multi-case topology optimization of frame structure based on the weight ratio. Chinese Journal of Engineering Design, 2016, 23(5): 444-452.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2016.05.007        https://www.zjujournals.com/gcsjxb/CN/Y2016/V23/I5/444

[1] 柴天. FSAE赛车整车性能分析与研究[D]. 长沙: 湖南大学机械与运载工程学院,2009:11-12. CHAI Tian. Analysis and research on performance of FSAE racing car[D]. Changsha: Hunan University, College of Mechanical and Vehicle Engineering, 2009: 11-12.
[2] CHEN T Y, WU S C. Multi-objective optimal topology design of structures[J]. Computational Mechanics, 1998, 21(6): 483-492.
[3] 扶原放,金达锋,乔蔚炜. 多工况下微型电动车车身结构拓扑优化设计[J]. 机械设计,2010,27(2):77-80. FU Yuan-fang, JIN Da-feng, QIAO Wei-wei. Topological optimization design on the body structure of mini electric cars under multi-working conditions[J]. Journal of Machine Design, 2010, 27(2):77-80.
[4] 崔伟. 某重型汽车车架多目标拓扑优化设计及其有限元分析[D]. 长沙: 湖南大学机械与运载工程学院, 2012:40-45. CUI Wei. Multi-objective topology optimization and finite element analysis to a heavy automobile frame[D]. Changsha: Hunan University, College of Mechanical and Vehicle Engineering, 2012:40-45.
[5] 兰凤崇,赖番结,陈吉清,等. 考虑动态特性的多工况车身结构拓扑优化研究[J]. 机械工程学报,2014, 50(20):122-128. LAN Feng-chong, LAI Fan-jie, CHEN Ji-qing, et al. Multi-case topology optimization of body structure considering dynamic characteristic[J]. Journal of Mechanical Engineering, 2014, 50(20):122-128.
[6] 范文杰,范子杰,桂良进,等. 多工况下客车车架结构多刚度拓扑优化设计研究[J]. 汽车工程,2008,30(6):531-533. FAN Wen-jie, FAN Zi-jie, GUI Liang-jin, et al. Multi-stiffness topology optimization of bus frame with multiple conditions[J]. Automotive Engineering, 2008, 30(6): 531-533.
[7] 兰凤崇,张浩锴,王家豪,等. 汽车转向节拓扑优化方法研究及应用[J]. 汽车工程,2014,36(4):464-468. LAN Feng-chong, ZHANG Hao-kai, WANG Jia-hao, et al. Study and application of topology optimization technique for vehicle steering knuckles[J]. Automotive Engineering, 2014, 36(4): 464-468.
[8] 陈国栋,韩旭. 基于代理模型的多目标优化方法及其在车身设计中的应用[J]. 机械工程学报,2014,50(9): 70. CHEN Guo-dong, HAN Xu. Multi-objective optimization method based on metamodel and its applications in vehicle body design[J]. Journal of Mechanical Engineering, 2014, 50(9): 70.
[9] 洪煌杰,王红岩,李建阳,等. 基于代理模型的空投装备气囊缓冲系统多目标优化[J]. 振动与冲击,2015,34(3): 215-220. HONG Huang-jie, WANG Hong-yan, LI Jian-yang, et al. Multi-objective optimization of an airbag cushion system for airdropping equipment based on surrogate model[J]. Journal of Vibration and Shock, 2015, 34(3):215-220.
[10] 刘俊,宋文萍,韩忠华. 基于代理模型的飞翼多目标气动优化设计[J]. 航空计算技术,2015, 45(2):1-5. LIU Jun, SONG Wen-ping, HAN Zhong-hua. Multi-objective aerodynamic design optimization of a flying wing using surrogate model[J]. Aeronautical Computing Technique, 2015, 45(2):1-5.
[11] 居小凡. Formula SAE赛车的设计制造及测试[D]. 上海:上海交通大学汽车工程学院,2009:15-19. JU Xiao-fan. Design-bulid-test of a formula SAE racing car[D]. Shanghai: Shanghai Jiaotong University, Institute of Automotive Engineering, 2009:15-19.
[12] JIANG Li-man, WANG Guo-quan, GONG Guo-qing, et al. Lightweight design for a FSC car based on modal and stiffness analysis[C]//Proceedings of the FISITA 2012 World. Berlin, Heidelberg: Springer-Verlag, 2013: 1009-1022.
[13] 阳文君,郭振辉. FSC车架静态性能的有限元分析与试验验证[J]. 湖北汽车工业学院学报,2012,26(4):68-71. YANG Wen-jun, GUO Zhen-hui. Finite element analysis and test validation on static performance of FSC frame[J]. Journal of Hubei University of Automotive Technology, 2012, 26(4):68-71.
[14] MIN S, NISHIWAKI S, KIKUCHI N. Unified topology design of static and vibrating structures using multiobjective optimization[J]. Computers & Structures, 2000, 75(1): 93-116.
[15] 高云凯,王婧人,汪翼. 基于正交试验的大型客车车身结构多工况拓扑优化研究[J]. 汽车技术,2011(11): 16-19. GAO Yun-kai, WANG Jing-ren, WANG Yi. Multi-case topology optimization of bus body structure based on orthogonal test[J]. Automobile Technology, 2011(11):16-19.
[16] 代丽,朱爱华,赵匀. 应用层次分析法计算分插机构优化目标的权重[J]. 农业工程学报,2013,29(2):60-65. DAI Li, ZHU Ai-hua, ZHAO Yun. Using AHP to calculate optimization objective weights of transplanting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 60-65.
[17] 田启华,王进学,杜义贤,等. 基于密度-敏度层次更新策略的三维连续体结构拓扑优化[J]. 工程设计学报,2015,22(2):155-160. TIAN Qi-hua, WANG Jin-xue, DU Yi-xian, et al. Three-dimensional continuum topology optimization based on density-sensitivity level update policy[J]. Chinese Journal of Engineering Design, 2015,22(2):155-160.
[18] 骆正清,杨善林. 层次分析法中几种标度的比较[J]. 系统工程理论与实践,2004, 24(9):51-60. LUO Zheng-qing, YANG Shan-lin. Comparative study on several scales in AHP[J]. Systems Engineering-theory and Practice, 2004, 24(9): 51-60.

[1] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[2] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[3] 丁述勇, 张征, 丁文洁, 林勇. 多巷道式立体车库优化设计与车辆存取策略研究[J]. 工程设计学报, 2021, 28(4): 443-449.
[4] 刘永江, 彭宣霖, 唐雄辉, 李华, 齐紫梅. 轴流散热风机共振失效分析与优化设计[J]. 工程设计学报, 2021, 28(2): 203-209.
[5] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(1): 67-75.
[6] 张鹄志, 马哲霖, 黄海林, 金浩, 彭玮. 不同位移边界条件下钢筋混凝土深梁拓扑优化[J]. 工程设计学报, 2019, 26(6): 691-699.
[7] 王艾伦, 刘乐, 刘庆亚. 基于Kriging代理模型的拉杆组合转子强度可靠性研究[J]. 工程设计学报, 2019, 26(4): 433-440.
[8] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402.
[9] 马天兵, 王孝东, 杜菲, 王鑫泉. 基于GA-SVM的刚性罐道故障诊断[J]. 工程设计学报, 2019, 26(2): 170-176.
[10] 张日成, 赵炯, 吴青龙, 熊肖磊, 周奇才, 焦洪宇. 考虑结构稳定性的变密度拓扑优化方法[J]. 工程设计学报, 2018, 25(4): 441-449.
[11] 杜义贤, 李荣, 徐明, 田启华, 周祥曼. 负泊松比微结构拓扑优化设计[J]. 工程设计学报, 2018, 25(4): 450-456.
[12] 邓星, 于兰峰, 雷聪, 徐江平, 肖泽平. 基于响应面法的无轨伸缩式门式起重机轻量化设计[J]. 工程设计学报, 2018, 25(3): 288-294.
[13] 唐华平, 曾理, 王胜泽, 陈昊森. 基于拓扑优化的重型矿用自卸车翻车保护结构设计[J]. 工程设计学报, 2018, 25(3): 295-301.
[14] 唐维, 谢延敏, 黄仁勇, 张飞, 潘贝贝. 基于自适应SVR-ELM混合近似模型的镁合金差温成形本构参数反求[J]. 工程设计学报, 2017, 24(5): 536-544.
[15] 王波, GEA Haechang, 白俊强, 张玉东, 宫建, 张卫民. 基于Stochastic Kriging模型的不确定性序贯试验设计方法[J]. 工程设计学报, 2016, 23(6): 530-536.