Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (3): 383-392    DOI: 10.3785/j.issn.1006-754X.2025.04.178
优化设计     
工业机器人线缆动态特性建模与布局优化
李翔1(),陶友瑞1,王嘉2,张扬3,杨铖浩1()
1.河北工业大学 机械工程学院,天津 300401
2.河北工业大学 电气工程学院,天津 300401
3.南京埃斯顿自动化股份有限公司,江苏 南京 211100
Dynamic characteristic modeling and layout optimization of industrial robot cables
Xiang LI1(),Yourui TAO1,Jia WANG2,Yang ZHANG3,Chenghao YANG1()
1.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
2.School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
3.Nanjing Estun Automation Co. , Ltd. , Nanjing 211100, China
 全文: PDF(3444 KB)   HTML
摘要:

工业机器人线缆变形特性是影响线缆使用寿命的主要因素之一。为了描述线缆运动形态,减少线缆布线对线缆寿命的影响,提出了基于弹簧阻尼链式等效的柔性线缆建模方法。将线缆通过线性弹簧、线性阻尼、扭转弹簧和扭转阻尼进行分割,实现了其质点的动力学描述,并基于牛顿法对各质点进行受力分析。将线缆运动过程离散为多个微小时间段内运动的集合,通过动力学分析得到当前时刻的动力学参数,经过一个微小时间内的运动后即可得到下一时刻各质点的位置,迭代上述步骤便可以仿真得到线缆的动态形态,并实现了工业机器人关节处线缆的运动仿真。而后,通过实验确定了线缆动力学模型的最优参数,并将参数优化后的动力学模型仿真形态与工业机器人线缆真实运动形态进行对比,验证了动力学模型的准确性。最后,以线缆模型的最大应力最小为目标,得到了工业机器人线缆布局优化方案。研究结果为提高工业机器人线缆的使用寿命提供了理论基础。

关键词: 工业机器人线缆动力学建模参数识别运动仿真布局优化    
Abstract:

The deformation characteristics of industrial robot cables are one of the main factors influencing the service lifespan of cables. In order to describe the movement pattern of the cables and mitigate the impact of cable routing on the lifespan of cables, a flexible cable modeling method based on the spring-damper chain equivalent was proposed. The cable was divided through linear springs, linear dampers, torsional springs and torsional dampers, achieving the dynamics description of its particles. And based on the Newton method, the force analysis was conducted for each particle. The cable movement process was discretized into a collection of movements in multiple tiny time intervals. The dynamics parameters at the current moment were obtained through dynamics analysis. After a movement in a tiny time interval, the position of each particle at the next moment could be derived. By iterating the above steps, the dynamic pattern of the cable could be simulated, and the movement simulation of the cable at the joint of industrial robot was realized. Subsequently, the optimal parameters of the cable dynamics model were determined through experiments, and the simulated pattern of dynamics model after parameters optimization was compared with the actual movement pattern of industrial robot cable to validate the accuracy of the dynamics model. Finally, an optimization scheme for the cable layout of industrial robot was obtained, with the objective of minimizing the maximum stress on cable model. The research results provide a theoretical basis for improving the service lifespan of industrial robot cables.

Key words: industrial robot cable    dynamics modeling    parameter identification    movement simulation    layout optimization
收稿日期: 2024-11-01 出版日期: 2025-07-02
CLC:  TH 113  
基金资助: 国家自然科学基金资助项目(52075146);河北省自然科学基金资助项目(E2023202135);河北省高等学校科学研究项目(BJ2025125);河北省科技项目(23281805Z);石家庄市科技项目(SJZZXC23008)
通讯作者: 杨铖浩     E-mail: l_xiang2024@163.com;c.yang@hebut.edu.cn
作者简介: 李 翔(1998—),男,硕士生,从事工业机器人线缆可靠性研究,E-mail: l_xiang2024@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李翔
陶友瑞
王嘉
张扬
杨铖浩

引用本文:

李翔,陶友瑞,王嘉,张扬,杨铖浩. 工业机器人线缆动态特性建模与布局优化[J]. 工程设计学报, 2025, 32(3): 383-392.

Xiang LI,Yourui TAO,Jia WANG,Yang ZHANG,Chenghao YANG. Dynamic characteristic modeling and layout optimization of industrial robot cables[J]. Chinese Journal of Engineering Design, 2025, 32(3): 383-392.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.178        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I3/383

图1  工业机器人本体线缆
图2  柔性线缆简化模型
图3  质点 i 受力示意
图4  质点 i 速度分解示意
图5  工业机器人线缆实验装置
实验组号坐标(X, Y, Z)/mm姿态(XOZ平面上与X轴的夹角/(°))
1(100.0, -35.0, 220.0)90
2(120.0, -35.0, 210.0)70
3(150.0, -35.0, 190.0)50
4(160.0, -35.0, 170.0)30
表1  线缆上端位置信息
实验组号标记点1标记点2标记点3标记点4
1(49.9, 7.8, 27.2)(94.6, -1.7, 66.6)(110.4, -18.7, 127.0)(104.4, -35.1, 187.4)
2(50.4, 6.9, 26.8)(96.6, -3.0, 64.6)(117.5, -19.8, 234.2)(118.5, -32.7, 184.6)
3(56.7, 6.7, 22.2)(102.6, -3.9, 54.9)(128.9, -20.0, 110.9)(137.1, -29.6, 172.3)
4(55.3, 6.2, 16.2)(108.5, -6.1, 42.4)(136.3, -23.1, 95.6)(147.0, -30.6, 156.6)
表2  线缆各标记点的坐标 (mm)
图6  线缆弹性系数识别中种群适应度的变化
运动时间/s相对位移/mm
标记点1标记点2标记点3标记点4
0.12.45.312.120.2
0.27.916.526.738.3
0.315.731.744.656.4
0.48.217.126.738.0
0.52.65.610.918.5
0.60.20.40.30.4
表3  线缆运动过程中各标记点的相对位移
图7  线缆阻尼系数识别中种群适应度的变化
图8  工业机器人第2关节处的线缆示意
图9  线缆运动实验结果
图10  线缆运动仿真结果
图11  线缆运动实验与仿真结果的对比
图12  线缆布局优化参数示意
图13  线缆布局优化参数对线缆最大应力的影响
图14  布局优化前后线缆最大应力变化曲线
图15  线缆表面曲面构建
图16  布局优化前后线缆最大应变变化曲线
[1] RAO H Y, WANG N G, DU R. Vibration cascade control for motor-driven deep-sea robot cable system with actuator fault[J]. Journal of Marine Science and Engineering, 2022, 10(11): 1772.
[2] WANG S Y, WU J H, TIAN P P, et al. Global sensitivity analysis of dynamic parameters to industrial robots considering spacetime two-dimensional output responses[J]. IEEE Transactions on Reliability, 2025, 74(2): 2813-2826.
[3] 柳松, 张德权, 吴锦辉, 等. 基于Kriging模型的工业机器人定位精度补偿方法[J]. 河北工业大学学报, 2022, 51(6): 19-24, 46.
LIU S, ZHANG D Q, WU J H, et al. A compensation method for positioning accuracy of industrial robot based on Kriging model[J]. Journal of Hebei University of Technology, 2022, 51(6): 19-24, 46.
[4] TERZOPOULOS D, QIN H. Dynamic NURBS with geometric constraints for interactive sculpting[J]. ACM Transactions on Graphics, 1994, 13(2): 103-136.
[5] GRÉGOIRE M, SCHÖMER E. Interactive simulation of one-dimensional flexible parts[J]. Computer-Aided Design, 2007, 39(8): 694-707.
[6] LOOCK A, SCHÖMER E. A virtual environment for interactive assembly simulation: from rigid bodies to deformable cable[C]//Proceedings of the 5th Word Multiconference on Systemics, Cybernetics and Informatics. New York: Springer Press, 2001: 325-332.
[7] 金望韬, 刘检华, 刘佳顺, 等. 光滑平面约束下的活动线缆物性建模与运动仿真技术[J]. 机械工程学报, 2016, 52(3): 118-127. doi:10.3901/JME.2016.03.118
JIN W T, LIU J H, LIU J S, et al. Motional cable harness physical characteristic oriented modeling and kinetic simulation technology under smooth plane constraints[J]. Journal of Mechanical Engineering, 2016, 52(3): 118-127.
doi: 10.3901/JME.2016.03.118
[8] 杨炜烽, 刘检华, 吕乃静, 等. 基于位置动力学的线缆运动过程仿真方法[J]. 机械工程学报, 2024, 60(6): 21-31, 57.
YANG W F, LIU J H, LÜ N J, et al. Method of cable dynamic simulation based on PBD[J]. Journal of Mechanical Engineering, 2024, 60(6): 21-31, 57.
[9] HERGENROTHER E, DAHNE P. Real-time virtual cables based on kinematic simulation[C]//International Conference in Central Europe on Computer Graphics and Visualization, Bilson City, Feb. 7-10, 2000.
[10] SUEDA S, JONES G L, LEVIN D I W, et al. Large-scale dynamic simulation of highly constrained strands[J]. ACM Transactions on Graphics, 2011, 30(4): 1-10.
[11] ZHANG H T, LING H. A feedback tracking system for robot[J]. Applied Mathematics and Mechanics, 1986, 7(8): 775-783.
[12] ZHU Z H. Dynamic modeling of cable system using a new nodal position finite element method[J]. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26(6): 692-704.
[13] COTTANCEAU E, THOMAS O, VÉRON P, et al. A finite element/quaternion/asymptotic numerical method for the 3D simulation of flexible cables[J]. Finite Elements in Analysis and Design, 2018, 139: 14-34.
[14] PARK H, LEE S H, CUTKOSKY M R. Computational support for concurrent engineering of cable harnesses[C]// Proceedings of the 1992 ASME International Computers in Engineering Conference and Exposition. New York: ASME Press, 1992: 261-268.
[15] CONRU A B. A genetic approach to the cable harness routing problem[C]//Proceedings of the IEEE Conference on Evolutionary Computation. New York: IEEE, 1994: 200-205.
[16] ZHU Z X, VAN TOOREN M, LA ROCCA G. A KBE application for automatic aircraft wire harness routing[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April 23-26, 2012.
[17] 刘潇, 刘检华, 刘佳顺, 等. 基于改进RRT算法的线缆自动布线技术[J]. 机械工程学报, 2015, 51(17): 96-105. doi:10.3901/jme.2015.17.096
LIU X, LIU J H, LIU J S, et al. Improved RRT based cable automatic routing[J]. Journal of Mechanical Engineering, 2015, 51(17): 96-105.
doi: 10.3901/jme.2015.17.096
[18] 刘潇, 刘检华, 刘佳顺, 等. 基于改进随机路径图的分支线缆自动布局技术[J]. 计算机集成制造系统, 2014, 20(12): 2952-2961.
LIU X, LIU J H, LIU J S, et al. Multi-branch cable automatic routing based on improved PRM[J]. Computer Integrated Manufacturing Systems, 2014, 20(12): 2952-2961.
[19] 杨啸东, 刘检华, 马江涛, 等. 基于混沌-粒子群算法的柔性线缆装配序列规划技术[J]. 北京理工大学学报, 2020, 40(9): 956-962.
YANG X D, LIU J H, MA J T, et al. Cable assembly sequence planning based on chaos-particle swarm optimization[J]. Transactions of Beijing Institute of Technology, 2020, 40(9): 956-962.
[20] 王发麟, 郭耀文, 龚建华, 等. 基于数字孪生的复杂机电产品线缆装配工艺模型动态构建方法[J]. 计算机集成制造系统, 2023, 29(6): 2047-2061.
WANG F L, GUO Y W, GONG J H, et al. Dynamic construction method of cable assembly process model for complex mechatronic products based on digital twin[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 2047-2061.
[21] 康荣杰, 周永翔, 杨铖浩. 面向非合作目标的柔性捕获器设计与动力学建模[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(2): 174-183.
KANG R J, ZHOU Y X, YANG C H. Design and dynamic modeling of a flexible catcher for noncooperative targets[J]. Journal of Tianjin University (Science and Technology), 2022, 55(2): 174-183.
[1] 魏晓华,韩峰,韩晓亮,何明忠. 复合式跳跃仿生机器人设计与分析[J]. 工程设计学报, 2025, 32(3): 334-345.
[2] 赵迪,陈果,陈小利,王熊锦. 轮式搜救机器人地形自适应机构设计及越障性能分析[J]. 工程设计学报, 2023, 30(5): 579-589.
[3] 李科军,陈淼林,王江银,姚学军,邓旻涯,高龙. 湿喷机液压制动系统制动阀性能研究[J]. 工程设计学报, 2022, 29(5): 579-586.
[4] 黄志强,王智勇,黄山,秦飞虎,杨金. 页岩气压缩机撬装模块系统散热分析及布局优化[J]. 工程设计学报, 2022, 29(5): 555-563.
[5] 李科军,邓旻涯,黄文静,张宇,曾家旺,陈淼林. 混凝土湿喷机摆动系统工作特性研究[J]. 工程设计学报, 2022, 29(4): 519-526.
[6] 赵富强,杜特,常宝玉,牛志刚. 肢腿履带足机构抬腿工况动力学分析与实验研究[J]. 工程设计学报, 2022, 29(4): 474-483.
[7] 高伟,张玮,谷海涛,孟令帅,高浩,赵志超. 大型深海AUV无动力螺旋下潜运动特性分析[J]. 工程设计学报, 2022, 29(3): 370-383.
[8] 王君, 冯康瑞, 程群超, 李文涛, 汪泉. 计算机辅助Watt型平面六连杆机构分支自动识别[J]. 工程设计学报, 2019, 26(5): 497-505.
[9] 李磊, 肖世德, 董庆丰, 李兴坤. 一种大型球罐内部检修工作台的设计与分析[J]. 工程设计学报, 2018, 25(2): 131-141.
[10] 邓丽, 王国华, 余隋怀. 遗传-蚁群算法求解司钻控制室操纵器布局优化[J]. 工程设计学报, 2016, 23(2): 143-151.
[11] 王 毅,姚卫星. 桁架结构布局优化的并行子空间方法[J]. 工程设计学报, 2015, 22(3): 256-261.
[12] 胡仕成,宋晶晶,王祥军. 混凝土湿喷机臂架系统的动力学建模与分析[J]. 工程设计学报, 2014, 21(3): 227-234.
[13] 林学杰, 唐进元. 一种矿车超速感应机构的键合图建模与仿真研究[J]. 工程设计学报, 2010, 17(3): 207-210.
[14] 胡振娴, 顾亮, 王国丽. 减震器橡胶连接件的动态特性实验研究以及参数识别[J]. 工程设计学报, 2009, 16(6): 427-431.
[15] 张 鄂, 刘明利, 邵晓春, 单军勇, 王东生. 动态环境人-车系统的人体振动特性研究与仿真[J]. 工程设计学报, 2009, 16(3): 166-171.