Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (3): 373-382    DOI: 10.3785/j.issn.1006-754X.2025.04.167
优化设计     
基于响应面法的高压共轨式超磁致伸缩喷油器响应时间优化
喻曹丰1,2(),胡逸凯1,段永勇1,魏梓贤1,王宁1
1.安徽理工大学 机电工程学院,安徽 淮南 232001
2.浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310027
Response time optimization of high-pressure common rail giant magnetostrictive injector based on response surface method
Caofeng YU1,2(),Yikai HU1,Yongyong DUAN1,Zixian WEI1,Ning WANG1
1.School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232001, China
2.State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(3777 KB)   HTML
摘要:

为提升高压共轨式喷油器的动态响应特性,基于超磁致伸缩材料棒及液压换向机构,设计了一种高压共轨式超磁致伸缩喷油器。在简述该喷油器整体结构设计和工作原理的基础上,考虑其驱动部分的磁滞非线性特征,基于Jiles-Atherton磁滞模型建立了其电-磁-机-液多场耦合模型。随后,搭建了完整的喷油器仿真模型,选取针阀信号作为喷油响应速度评价指标,确定了针阀弹簧预紧力的最优值。最后,采用响应面法优化了控制活塞直径、控制腔容积、进油孔直径和出油孔直径等参数,并基于拟合方程分析了优化后各参数对喷油器响应时间的影响。结果显示:相较于优化前,优化后针阀的开启延迟缩短了3.251%,开启时间缩短了1.364%,关闭延迟缩短了9.465%,关闭时间缩短了14.848%。研究表明,所采用的优化方法可有效提高针阀的响应速度,有助于提升高压共轨式喷油器的小油量喷油及多次喷油性能。

关键词: 超磁致伸缩喷油器Jiles-Atherton磁滞模型响应面法参数优化    
Abstract:

To improve the dynamic response characteristics of high-pressure common rail injectors, a high-pressure common rail giant magnetostrictive injector was designed based on the giant magnetostrictive material rod and the hydraulic reversing mechanism. On the basis of briefly describing the overall structure design and working principle of this injector, considering the nonlinear hysteresis characteristics of its driving part, an electro-magnetic-mechanical-hydraulic multiphysics coupling model was established based on the Jiles-Atherton hysteresis model. Then, a complete simulation model of the injector was constructed. The needle valve signal was selected as the evaluation index for fuel injection response speed, and the optimal preload force of the needle valve spring was determined. Finally, the parameters such as the control piston diameter, the control cavity volume, the oil inlet diameter and the oil outlet diameter were optimized by using the response surface method, and the influence of the optimized parameters on the response time of the injector was analyzed based on the fitting equation. The results showed that compared with before optimization, the opening delay of the needle valve after optimization was reduced by 3.251%, the opening time was reduced by 1.364%, the closing delay was reduced by 9.465%, and the closing time was reduced by 14.848%. The research indicates that the adopted optimization method can effectively improve the response speed of the needle valve, which is conducive to enhancing the small-quantity fuel injection and multiple fuel injection performance of the high-pressure common rail injector.

Key words: giant magnetostrictive    injector    Jiles-Atherton hysteresis model    response surface method    parameter optimization
收稿日期: 2024-09-04 出版日期: 2025-07-02
CLC:  TK 422  
基金资助: 国家自然科学基金资助项目(52105042);流体动力基础件与机电系统全国重点实验室开放基金资助项目(GZK-202302);中国博士后科学基金资助项目(2019M652159)
作者简介: 喻曹丰(1987—),男,副教授,博士,从事超磁致伸缩智能构件设计研究,E-mail: yucaofeng@aust.edu.cn,https://orcid.org/0000-0001-5221-8915
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
喻曹丰
胡逸凯
段永勇
魏梓贤
王宁

引用本文:

喻曹丰,胡逸凯,段永勇,魏梓贤,王宁. 基于响应面法的高压共轨式超磁致伸缩喷油器响应时间优化[J]. 工程设计学报, 2025, 32(3): 373-382.

Caofeng YU,Yikai HU,Yongyong DUAN,Zixian WEI,Ning WANG. Response time optimization of high-pressure common rail giant magnetostrictive injector based on response surface method[J]. Chinese Journal of Engineering Design, 2025, 32(3): 373-382.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.167        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I3/373

图1  高压共轨式GMI结构示意
图2  高压共轨式GMI工作原理
图3  高压共轨式GMI仿真模型
参数数值
线圈电感/mH11.2
线圈电阻/Ω10.8
线圈磁场系数3 180
GMM棒等效阻尼系数/(N·s/m)3×106
饱和磁致伸缩系数1.5×10-3
控制腔容积/mm330
进油孔直径/mm0.21
出油孔直径/mm0.27
平面阀质量/g7.5
针阀质量/g17.3
柱塞直径/mm4.4
针阀直径/mm4.0
针阀半角/(°)29.8
喷孔数量/个6
喷孔直径/mm0.169
表1  高压共轨式GMI主要参数
图4  驱动电流波形
图5  GMI驱动部分位移测量实验平台
图6  GMI驱动部分位移对比
图7  针阀响应时间分布情况
结构参数初始值取值范围
进油孔直径/mm0.210.20~0.23
出油孔直径/mm0.270.26~0.29
控制腔容积/mm33015~45
控制活塞直径/mm4.44.2~4.5
针阀弹簧预紧力/N4838~68
针阀弹簧刚度/(N/mm)7660~90
针阀锥角/(°)29.825~40
表2  GMI各结构参数的初始值与取值范围
图8  GMI各结构参数的重要性占比
图9  针阀弹簧预紧力的单因素分析结果
水平

控制活塞

直径A/mm

控制腔容积B/mm3进油孔直径C/mm出油孔直径D/mm
-14.20150.2000.260
04.35300.2150.275
14.50450.2300.290
表3  GMI结构参数响应面试验的因素水平表
试验序号因素tc/ms
A/mmB/mm3C/mmD/mm
14.50300.2150.2900.352 905
24.20300.2300.2750.351 820
34.35300.2000.2600.390 330
44.35300.2150.2750.360 895
54.35300.2150.2750.360 895
64.20300.2000.2750.393 170
74.20150.2150.2750.360 630
84.35300.2300.2600.359 350
94.35450.2150.2900.362 490
104.35300.2000.2900.374 705
114.35150.2000.2750.370 000
124.35150.2300.2750.339 530
134.35150.2150.2900.345 120
144.35450.2000.2750.391 555
154.20300.2150.2900.360 895
164.35300.2150.2750.360 895
174.35300.2150.2750.360 895
184.20300.2150.2600.376 550
194.35420.2150.2600.381 485
204.35300.2300.2900.338 010
214.50300.2300.2750.351 150
224.35300.2150.2750.360 895
234.35450.2300.2750.352 550
244.50150.2150.2750.353 635
254.50300.2000.2750.381 005
264.50450.2150.2750.374 935
274.35150.2150.2600.361 295
284.20450.2150.2750.380 375
294.50300.2150.2600.374 075
表4  GMI结构参数的响应面试验结果
图10  响应面模型的残差正态概率分布
图11  GMI响应时间的预测值与实际值分布
方差与信噪比数值
r20.997 4
rA20.994 8
rP20.985 1
信噪比73.245 7
表5  响应面模型误差分析结果
图12  各结构参数对GMI响应时间的影响
对比项t1/mst2/mst3/mst4/mstc/ms
相对误差/%3.2511.3649.46514.8489.499
优化前0.292 20.212 60.439 50.500 40.371 6
优化后0.282 70.209 70.397 90.426 10.336 3
表6  优化前后GMI响应时间仿真结果对比
图13  优化前后针阀的速度、位移和GMI的喷油速率对比
[1] 钱德省, 廖日东. 柴油机高压油泵柱塞副泄漏研究进展[J]. 润滑与密封, 2014, 39(9): 108-115, 118. doi:10.3969/j.issn.0254-0150.2014.09.023
QIAN D X, LIAO R D. Review on pison/cylinder interface leakage research of high-pressure pump for diesel engine[J]. Lubrication Engineering, 2014, 39(9): 108-115, 118.
doi: 10.3969/j.issn.0254-0150.2014.09.023
[2] ZHOU Z Q, HE Z B, XUE G M, et al. Analysis of working characteristics of giant magnetostrictive actuator for direct-drive fuel injector[J]. AIP Advances, 2022, 12(7): 075216.
[3] 杨朗建, 雷基林, 宋国富, 等. 农用柴油机活塞环组机油消耗和窜气的灰色关联分析与预测[J].农业工程学报, 2023, 39(15): 57-66.
YANG L J, LEI J L, SONG G F, et al. Grey relation analysis and prediction of lube oil consumption and crankcase blow-by in piston ring pack for agricultural diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(15): 57-66.
[4] ZHOU X F, MA Z H, LIU Y N, et al. Influence of injection system parameters on combustion noise of a small power non-road diesel engine[J]. International Journal of Automotive Technology, 2023, 24(5): 1383-1393.
[5] RAMACHANDER J, GUGULOTHU S K, SURYA M S. An experimental assessment on the influence of high fuel injection pressure with ternary fuel (diesel‐Mahua methyl ester‐pentanol) on performance, combustion and emission characteristics of common rail direct injection diesel engine[J]. Heat and Mass Transfer, 2021, 57(12): 2015-2027.
[6] 武强, 涂坤, 曾一凡. “双碳” 目标愿景下我国能源战略形势若干问题思考[J]. 科学通报, 2023, 68(15): 1884-1898.
WU Q, TU K, ZENG Y F. Research on China's energy strategic situation under the carbon peaking and carbon neutrality goals[J]. Chinese Science Bulletin, 2023, 68(15): 1884-1898.
[7] 喻曹丰, 王传礼, 解甜, 等. 基于GMM的高性能微定位工作台驱动系统的研制[J]. 机械工程学报, 2019, 55(9): 136-143. doi:10.3901/jme.2019.09.136
YU C F, WANG C L, XIE T, et al. Development of drive system of high performance micro positioning worktable based on giant magnetostrictive material[J]. Journal of Mechanical Engineering, 2019, 55(9): 136-143.
doi: 10.3901/jme.2019.09.136
[8] 刘易斯, 李俊阳, 杨宇通, 等. 基于超磁致伸缩材料的谐波驱动器结构与磁场优化设计[J]. 重庆大学学报, 2021, 44(2): 94-106.
LIU Y S, LI J Y, YANG Y T, et al. Optimization of structure and magnetic field of a harmonic actuator based on giant magnetostrictive material[J]. Journal of Chongqing University, 2021, 44(2): 94-106.
[9] WANG Z S, WANG H B, LIU X H. Dynamic response of the output force of giant magnetostrictive materials[J]. International Journal of Mechanics and Materials in Design, 2020, 16(4): 685-691.
[10] 荣策, 何忠波, 薛光明, 等. 喷油器用超磁致伸缩致动器结构设计及输出特性实验研究[J]. 磁性材料及器件, 2023, 54(1): 50-59.
RONG C, HE Z B, XUE G M, et al. Structural design and output performance testing of giant magnetostrictive actuator for electronic controlled fuel injector[J]. Journal of Magnetic Materials and Devices, 2023, 54(1): 50-59.
[11] LI Y N, ZHANG P L, HE Z B, et al. A simple magnetization model for giant magnetostrictive actuator used on an electronic controlled injector[J]. Journal of Magnetism and Magnetic Materials, 2019, 472: 59-65.
[12] 薛光明, 张培林, 何忠波, 等. 超磁致伸缩式喷油器设计与建模[J]. 内燃机学报, 2019, 37(4): 337-342.
XUE G M, ZHANG P L, HE Z B, et al. Design and modeling of the giant magnetostrictive injector[J]. Transactions of CSICE, 2019, 37(4): 337-342.
[13] 喻曹丰, 段永勇, 王玉, 等. 超磁致伸缩式喷油器的结构参数优化及其响应特性研究[J]. 机床与液压, 2023, 51(19): 148-154.
YU C F, DUAN Y Y, WANG Y, et al. Optimization of structural parameters and response characteristics of giant magnetostrictive fuel injector[J]. Machine Tool & Hydraulics, 2023, 51(19): 148-154.
[14] 车文侃,李立新,汪峰.基于响应面法的铆压型轮毂轴承单元内圈结构优化试验研究[J]. 机电工程, 2025, 42(3): 491-500.
CHE W K, LI L X, WANG F. Experimental study on inner ring structure optimization of riveted wheel bearing unit based on response surface method[J]. Journal of Mechanical & Electrical Engineering, 2025, 42(3): 491-500.
[15] 陈国梁, 黄永刚, 邵亚建, 等. 基于响应面优化法的某矿山充填配比优化[J]. 有色金属科学与工程, 2016, 7(2): 73-76.
CHEN G L, HUANG Y G, SHAO Y J, et al. Based on response surface optimization method of certain mine filling ratio optimization[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 73-76.
[1] 杨培,张明路,孙凌宇. 爬壁机器人磁吸附模块设计分析与结构参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
[2] 蔡锦云,刘忠,王罡,赵庆斌,安宁,杜旭伟,李东良,李源周. 基于响应面法的绞磨机辅助拉尾绳装置优化设计[J]. 工程设计学报, 2024, 31(2): 178-187.
[3] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[4] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.
[5] 张文豪,班传文,李松梅. 基于离散元法的双组份复合涂料搅拌螺杆参数优化[J]. 工程设计学报, 2022, 29(5): 547-554.
[6] 钟道方, 田颖, 张明路. 轮腿式爬壁机器人的永磁吸附装置设计与优化[J]. 工程设计学报, 2022, 29(1): 41-50.
[7] 汤亮, 何仁杰, 龚发云, 李飞扬, 刘冠军, 杨敏. 变风载下风电齿轮箱内部激励规律研究及动态特性优化[J]. 工程设计学报, 2020, 27(2): 212-222.
[8] 高启升, 朱兴华, 于延凯, 郑荣. UUV耐压结构多目标优化设计[J]. 工程设计学报, 2020, 27(2): 232-238.
[9] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402.
[10] 魏春雨, 蔡月, 刘明贺, 张琦, 贾乾忠. 新型车载医疗救护隔振平台设计及仿真[J]. 工程设计学报, 2018, 25(5): 532-538.
[11] 陈洪武, 彭聪聪, 田铖, 王立原. 基于响应面法对桁架结构形状的优化设计[J]. 工程设计学报, 2018, 25(4): 457-464.
[12] 赵延超, 武美萍, 王全龙, 吴克中. 喷油器体深孔直线度加工工艺参数优化[J]. 工程设计学报, 2018, 25(3): 302-308,314.
[13] 李彦奎, 吕彦明, 倪明明. 基于正交试验的航空叶片精锻模具磨损分析[J]. 工程设计学报, 2017, 24(6): 632-637.
[14] 杨诗怡, 张峰峰, 范立成, 匡绍龙, 孙立宁. 放疗床多目标协调机构参数优化研究[J]. 工程设计学报, 2016, 23(3): 256-263.
[15] 李占福, 童昕. 基于AFSA-SimpleMKL对振动筛建模及筛机优化[J]. 工程设计学报, 2016, 23(2): 181-187.