Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (4): 483-490    DOI: 10.3785/j.issn.1006-754X.2024.03.200
优化设计     
欠驱动型ROV改进设计与纵倾优化
许哲1(),代威1,曹宇1,李永国1(),张舜2
1.上海海洋大学 工程学院,上海 201306
2.上海遨拓深水装备技术开发有限公司,上海 201306
Improved design and longitudinal pitch optimization of underdriven ROV
Zhe XU1(),Wei DAI1,Yu CAO1,Yongguo LI1(),Shun ZHANG2
1.College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China
2.AutoSubsea Vehicles Inc. , Shanghai 201306, China
 全文: PDF(3756 KB)   HTML
摘要:

针对无人遥控潜水器(remotely operated vehicle, ROV)在高速航行时因受流场作用而导致纵倾幅值、纵倾角度变化较大的问题,提出通过搭配选择扩展底盘和尾翼结构参数的方法来实现欠驱动型ROV的零纵倾或微纵倾高速运动。基于格子玻尔兹曼方法(lattice Boltzmann method, LBM),通过壁面自适应细化算法,结合ROV的结构参数进行六自由度仿真实验,以模拟ROV的航行运动。对扩展底盘和尾翼高度不同的ROV分别进行数值分析,得到扩展底盘、尾翼的结构参数与ROV纵倾幅值、纵倾角度的关系。通过对航行表现相似的ROV的旋转力矩进行比较,确定了在相同扩展底盘条件下ROV的稳定性与尾翼高度的关系。开展了扩展底盘和尾翼结构优化正交实验,利用遗传算法对不同实验方案下ROV的纵倾数据进行了拟合处理。结合实际需求确定了扩展底盘和尾翼的高度,并通过实际测试验证了ROV纵倾优化设计方案的正确性。结果表明,合理搭配扩展底盘和尾翼的结构可有效减小欠驱动型ROV的纵倾幅值,从而实现ROV在无幅值补偿时的微纵倾航行运动。研究结果可为相关水下装置纵倾运动的改进提供参考。

关键词: 无人遥控潜水器格子玻尔兹曼方法纵倾六自由度仿真结构优化    
Abstract:

Aiming at the problems of large changes in longitudinal pitch amplitude and longitudinal pitch angle caused by the flow field when the remotely operated vehicle (ROV) sails at high speed, a method for achieving high speed underdriven ROV operated with zero longitudinal pitch or slight longitudinal pitch by matching and selecting structural parameters of the extended chassis and the tailplane was proposed. Based on the lattice Boltzmann method (LBM), a six-degree-of-freedom simulation experiment was carried out by using the wall adaptive refinement algorithm combined with the structural parameters of the ROV to simulate the ROV sailing motion. The numerical analysis for the ROV with different height of extended chassis and tailplane was analyzed numerically to obtain the relationship between the structural parameters of extended chassis and tailplane and the longitudinal pitch amplitude and longitudinal pitch angle. By comparing the rotating torque of ROVs with similar sailing performance, the relationship between ROV stability and tailplane height was determined under the same extended chassis conditions. The orthogonal experiments for structure optimization of the extended chassis and tailplane were conducted, and the longitudinal pitch data of the ROV under different experimental schemes were fitted by using genetic algorithm. Combined with the actual requirements, the height of the extended chassis and tailplane was determined, and the correctness of the ROV longitudinal pitch design scheme was verified by the actual test. The results showed that the reasonable match of the extended chassis and tailplane structure could effectively reduced the longitudinal pitch amplitude of underdriven ROVs, so as to achieve slight longitudinal pitch sailing motion of ROVs without amplitude compensation. The research results can provide reference for improving the longitudinal pitch motion of relevant underwater devices.

Key words: remotely operated vehicle    lattice Boltzmann method    longitudinal pitch    six-degree-of-freedom simulation    structure optimization
收稿日期: 2023-08-31 出版日期: 2024-08-26
CLC:  TP 242  
基金资助: 国家自然科学基金资助项目(51876114)
通讯作者: 李永国     E-mail: xuzhe@shou.edu.cn;yg-li@shou.edu.cn
作者简介: 许 哲(1970—),男,吉林安图人,副教授,博士,从事机电一体化研究,E-mail: xuzhe@shou.edu.cn,https://orcid.org/0009-0002-0423-320X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许哲
代威
曹宇
李永国
张舜

引用本文:

许哲,代威,曹宇,李永国,张舜. 欠驱动型ROV改进设计与纵倾优化[J]. 工程设计学报, 2024, 31(4): 483-490.

Zhe XU,Wei DAI,Yu CAO,Yongguo LI,Shun ZHANG. Improved design and longitudinal pitch optimization of underdriven ROV[J]. Chinese Journal of Engineering Design, 2024, 31(4): 483-490.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.200        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I4/483

图1  欠驱动型ROV实物图
参数数值
主体质量/kg65
主体外形尺寸/(mm×mm×mm)550×820×500
扩展底盘尺寸/(mm×mm×mm)550×830×200
垂向推进器数量/个2
水平推进器数量/个8
最大水平推力/N700
正浮力/N20
表1  欠驱动型ROV的主要结构参数
图2  欠驱动型ROV的计算流域
图3  欠驱动型ROV航行运动云图
图4  欠驱动型ROV纵倾幅值、纵倾角度的实测值与仿真值对比
图5  扩展底盘高度不同的欠驱动型ROV三维模型
图6  扩展底盘高度对欠驱动型ROV纵倾的影响( t=3 s)
图7  欠驱动型ROV尾翼的安装位置与结构
图8  尾翼高度对欠驱动型ROV纵倾的影响( t=3 s)
图9  尾翼高度为35,40,45 mm时欠驱动型ROV的旋转力矩对比
参数及函数数值及表达式
种群数量/个100
最大迭代数/次500
交叉概率0.5
变异概率0.07
目标函数F(x,?y)=c1+c2x+c3y+c4x2+c5y2+c6xy+c7y3+c8y4+c9x2y+c10xy2+c11x2y2+c12x3+c13x3y+c14xy3
适应度函数E=1Nh=1N(Fh-zh)2
表2  遗传算法的参数设置
图10  欠驱动型ROV的纵倾幅值与扩展底盘、尾翼高度的关系曲面
扩展底盘高度尾翼高度
10035.29
12040.68
15043.17
18045.26
20047.53
22052.94
25060.15
表3  7组扩展底盘高度对应的最优尾翼高度 (mm)
图11  优化后的欠驱动型ROV样机
图12  优化前后欠驱动型ROV的纵倾幅值、纵倾角度对比
1 RAHIMUDDIN, HASAN H, RIVAI H A, et al. Design of omni directional remotely operated vehicle (ROV)[J]. Journal of Physics: Conference Series, 2018, 962: 012017.
2 PRABHAKAR S, BUCKHAM B. Dynamics modeling and control of a variable length remotely operated vehicle tether[C]//Proceedings of OCEANS 2005 MTS/IEEE. Washington, DC, Sep. 17-23, 2005.
3 邓鲁克,吕东坡.基于遗传算法对控制水下机器人运动姿态进行PID参数整定[J].制造业自动化,2023,45(1):177-179,206.
DENG L K, LÜ D P. PID parameter tuning of remotely operated vehicle control attitude based on genetic algorithm[J]. Manufacturing Automation, 2023, 45(1): 177-179, 206.
4 WANG R L, LI Z Q, MA S G, et al. Development of an underwater detection robot[J]. Journal of Physics: Conference Series, 2022, 2203: 012008.
5 孙洪鸣,郭威,周悦,等.全海深着陆车机构设计及其潜浮运动性能分析[J].机器人,2020,42(2):207-214. doi:10.13973/j.cnki.robot.190375
SUN H M, GUO W, ZHOU Y, et al. Mechanism design and diving-floating motion performance analysis on the full ocean depth landing vehicle[J]. Robot, 2020, 42(2): 207-214.
doi: 10.13973/j.cnki.robot.190375
6 DONG M J, LI J F, CHOU W S. Depth control of ROV in nuclear power plant based on fuzzy PID and dynamics compensation[J]. Microsystem Technologies, 2020, 26(3): 811-821.
7 XIE Y, ZHU A F, HUANG Z H. Research on the control performance of depth-fixed motion of underwater vehicle based on fuzzy-PID[J]. Journal of Robotics, 2023, 2023(1): 4168433.
8 徐玉宁,山钦.ROV加装SKID后对其作业的影响评估[J].石化技术,2022,29(4):192-193,142.
XU Y N, SHAN Q. Evaluation of the impact of ROV loading SKID on its operation[J]. Petrochemical Industry Technology, 2022, 29(4): 192-193, 142.
9 AGUIRRE-CASTRO O A, INZUNZA-GONZÁLEZ E, GARCÍA-GUERRERO E E, et al. Design and construction of an ROV for underwater exploration[J]. Sensors (Basel), 2019, 19(24): 5387.
10 HAO H H, SONG Y P, YU J Y .Numerical analysis of water exit for a sphere with constant velocity using the lattice Boltzmann method[J]. Applied Ocean Research,2019, 84: 163-179.
11 闫银坡,于福杰,陈原.开架式水下机器人水动力系数计算与动力学建模[J].兵工学报,2021,42(9):1972-1986. doi:10.3969/j.issn.1000-1093.2021.09.018
YAN Y P, YU F J, CHEN Y. Hydrodynamic coefficients calculation and dynamic modeling of an open-frame underwater robot[J]. Acta Armamentarii, 2021, 42(9): 1972-1986.
doi: 10.3969/j.issn.1000-1093.2021.09.018
12 SATRIA D, WIRYADINATA R, ESISWITOYO D P A, et al. Hydrodynamic analysis of remotely operated vehicle (ROV) observation class using CFD[J]. IOP Conference Series: Materials Science and Engineering, 2019, 645: 012014.
13 许顺源,吴家鸣,马承华,等.带缆水下机器人转首控制及水动力分析[J].中国造船,2022,63(2):126-136.
XU S Y, WU J M, MA C H, et al. Analysis of turning motion and hydrodynamic performance of tethered underwater robot[J]. Shipbuilding of China, 2022, 63(2): 126-136.
14 王晓鸣,冯森.尾翼对微型ROV运动稳定性的影响[J].机械设计与研究,2019,35(2):30-35. doi:10.13952/j.cnki.jofmdr.a4889
WANG X M, FENG S. Research on kinematic stability of micro remotely operated vehicle with different spoilers[J]. Machine Design and Research, 2019, 35(2): 30-35.
doi: 10.13952/j.cnki.jofmdr.a4889
15 张志君,陈默,杨贺捷,等.基于XFlow的仿生扑翼飞行器机翼气动特性分析[J].东北大学学报(自然科学版),2021,42(6):821-828. doi:10.12068/j.issn.1005-3026.2021.06.010
ZHANG Z J, CHEN M, YANG H J, et al. Analysis of aerodynamic characteristics of bionic flapping wing aircraft based on XFlow[J]. Journal of Northeastern University (Natural Science), 2021, 42(6): 821-828.
doi: 10.12068/j.issn.1005-3026.2021.06.010
16 杨永刚,苏汉平.基于XFlow多自由度仿鸟扑翼飞行器气动仿真[J].系统仿真学报,2018,30(6):2162-2167.
YANG Y G, SU H P. Aerodynamic simulation of multi-DOF flapping-wing air vehicle of bird-like based on XFlow software[J]. Journal of System Simulation, 2018, 30(6): 2162-2167.
17 HAN S L, YU R X, LI Z Y, et al. Effect of turbulence model on simulation of vehicle aerodynamic characteristics based on XFlow[J]. Applied Mechanics and Materials, 2013, 457-458: 1571-1574.
18 LIU Y H, FANG P P, BIAN D D, et al. Fuzzy comprehensive evaluation for the motion performance of autonomous underwater vehicle[J]. Ocean Engineering, 2014, 88: 568-577.
19 许伦辉,吴攀,黄宝山.基于XFlow软件的双体游艇阻力准确性分析[J].船舶标准化工程师,2019,52(4):50-56. doi:10.14141/j.31-1981.2019.04.011
XU L H, WU P, HUANG B S. Accuracy analysis in the resistance of catamaran based on XFlow software[J]. Ship Standardization Engineer, 2019, 52(4): 50-56.
doi: 10.14141/j.31-1981.2019.04.011
[1] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[2] 杨世香, 李文强. 焚烧灰处理装备密封结构的创新设计[J]. 工程设计学报, 2021, 28(6): 679-686.
[3] 张泽, 陈勇, 李光鑫, 雷勇敢, 阮鸥, 王再宙. 电动汽车变速器电液控制系统总成设计及结构优化[J]. 工程设计学报, 2021, 28(3): 335-343.
[4] 张园, 彭振华, 高定祥, 任海涛, 唐一鑫. 芯管式稠油掺稀混合器设计及其掺混性能研究[J]. 工程设计学报, 2018, 25(5): 510-517.
[5] 王杰, 钱利勤, 陈新龙, 孙巧雷, 邓自强, 冯定. 自动猫道起升系统动力学模型与分析[J]. 工程设计学报, 2016, 23(5): 437-443,460.
[6] 刘 喆,陶凤和,贾长治. 履带车辆传动轴疲劳寿命预测与结构改进[J]. 工程设计学报, 2015, 22(5): 431-437.
[7] 张青春, 卿启湘, 刘 杰. 基于气固两相流的反循环潜孔钻头柱齿拓扑优化设计[J]. 工程设计学报, 2014, 21(4): 340-347.
[8] 童水光, 蔡琴, 袁铭鸿, 张建. 强夯机臂架应力测试与结构优化[J]. 工程设计学报, 2013, 20(2): 126-130.
[9] 王国丽, 黄小海, 刘树辉, 李庆伟. 汽车悬架稳定杆连杆支架的疲劳仿真分析及结构优化[J]. 工程设计学报, 2013, 20(1): 18-21.
[10] 张璨, 刘锋, 李丽娟. 改进的细菌觅食优化算法及其在框架结构设计中的应用[J]. 工程设计学报, 2012, 19(6): 422-427.
[11] 刘舜尧, 李进, 贺浩. 基于渐进结构优化的取料梁腹板拓扑优化[J]. 工程设计学报, 2011, 18(3): 174-177.
[12] 刘 锋, 覃 广, 李丽娟. 快速被动群搜索优化算法及其在空间结构中的应用[J]. 工程设计学报, 2010, 17(6): 420-425.
[13] 谭启檐, 高云国, 王小庆, 薛向尧. 激光转台芯部结构动态特性研究与优化[J]. 工程设计学报, 2010, 17(3): 186-189.
[14] 曹恒, 贺成坤, 孟宪伟, 凌正阳. 下肢外骨骼服传感靴的结构优化分析[J]. 工程设计学报, 2010, 17(1): 35-39.
[15] 王晓燕,杨志强,翁孟超. 基于改进自适应遗传算法的钢框架非线性优化设计[J]. 工程设计学报, 2009, 16(2): 103-107.