Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (1): 50-55    DOI: 10.3785/j.issn.1006-754X.2018.01.007
保质设计     
机器人的运动时变可靠性分析
文瑞桥, 杨梦鸥, 刘涛, 张均富
西华大学 机械工程学院, 四川 成都 610039
Time-dependent kinematic reliability analysis of robot manipulators
WEN Rui-qiao, YANG Meng-ou, LIU Tao, ZHANG Jun-fu
School of Mechanical Engineering, Xihua University, Chengdu 610039, China
 全文: PDF(802 KB)   HTML
摘要:

机器人系统存在的多种不确定性会导致其运动精度下降,为此开展机器人运动时变不确定性建模与分析,以期提高机器人运动精度。首先基于运动学分析建立了机器人末端执行器参考点位姿误差模型,随后基于机器人位姿误差模型提出了末端执行器位置精度的点(静态)可靠性、时变(区间)可靠性模型以及机器人运动的系统可靠性模型,最后给出了实现上述可靠性模型高效、高精度求解的包络方法,并以斯坦福机器人为实例验证了所提模型和求解方法的有效性。研究表明,所提出的可靠性模型能够有效获得机器人各坐标分量上的时变可靠度以及机器人运动的系统可靠度。研究工作为提高机器人运动精度提供了新方法。

关键词: 机器人位置误差运动精度运动时变可靠性    
Abstract:

Uncertainty existing in robot manipulators would decrease the kinematic accuracy, so the modeling and analyzing of time-dependent kinematic uncertainty for robot manipulators were carried out in order to improve the kinematic accuracy. Firstly, the error model of position and pose for reference point of end-effector was established based on kinematic analysis. Then, models of point kinematic reliability and time-dependent kinematic reliability for positional accuracy and system reliability model for robot manipulators were proposed based on the error model of position and pose. At last, an envelope method with high efficiency and high precision was utilized to solve the mentioned reliability models above, and effectiveness of the proposed reliability models and solution method were verified by means of Standford robot. The results showed that the reliability model could effectively obtain the time-dependent reliability of each coordinate component and system reliability of the robot manipulators. Thus the research provides a new method for improving kinematic accuracy of robot manipulators.

Key words: robot manipulators    positional error    kinematic accuracy    time-dependent kinematic reliability
收稿日期: 2017-05-08 出版日期: 2018-02-28
CLC:  TP242  
基金资助:

国家自然科学基金资助项目(51275425);流体及动力机械教育部重点实验室研究基金(西华大学)(JYBFX-YQ-1);四川省教育厅项目(15TD0016,12ZZ008);西华大学研究生创新基金资助项目(ycjj2016031)

通讯作者: 张均富(1972-),男,四川乐山人,教授,硕士生导师,博士,从事概率工程设计及机器人机构学等研究,E-mail:zhang_junfu@126.com,http://orcid.org/0000-0001-7767-647X     E-mail: zhang_junfu@126.com
作者简介: 文瑞桥(1993-),男,四川达州人,硕士生,从事机构系统可靠性研究,E-mail:290776933@qq.com,http://orcid.org/0000-0002-9949-341X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
文瑞桥
杨梦鸥
刘涛
张均富

引用本文:

文瑞桥, 杨梦鸥, 刘涛, 张均富. 机器人的运动时变可靠性分析[J]. 工程设计学报, 2018, 25(1): 50-55.

WEN Rui-qiao, YANG Meng-ou, LIU Tao, ZHANG Jun-fu. Time-dependent kinematic reliability analysis of robot manipulators. Chinese Journal of Engineering Design, 2018, 25(1): 50-55.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.01.007        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I1/50

[1] WALDRON K J, KUMAR A. Development of a theory of errors for manipulators[C]//Proceedings of the Fifth World Congress on the Theory of Machines and Mechanisms, Montreal, Canada:American Society of Mechanical Engineers, 1979:821-826.
[2] 徐卫良.机器人机构误差建模的摄动法[J].机器人,1989,3(6):39-44. XU Wei-liang. A perturbation approach to error modeling of robot linkage[J]. Robot, 1989, 3(6):39-44.
[3] 焦国太.机器人位姿误差的分析与综合[D].北京:北京工业大学机械工程与应用电子技术学院,2002:7-12. JIAO Guo-tai. Analysis and synthesis of robot pose errors[D]. Beijing:Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 2002:7-12.
[4] 卫玉昆,焦国太.基于MATLAB的柔性机械臂动力学分析[J].机械工程与自动化,2016(1):33-36. WEI Yu-kun, JIAO Guo-tai. Flexible robot arm dynamics analysis based on MATLAB[J]. Mechanical Engineering & Automation, 2016(1):33-36.
[5] 陈明哲,张启先.工业机器人误差分析[J].北京航空学院学报,1984(2):11-22. CHEN Ming-zhe, ZHANG Qi-xian. Error analyses of the industrial robots[J]. Journal of Beijing Institute of Aeronautics and Astronautics, 1984(2):11-22.
[6] PEDRAMMEHR S, QAZANI M, ABDI H, et al. Mathematical modelling of linear motion error for Hexarot parallel manipulators[J]. Applied Mathematical Modelling, 2016, 40(2):942-954.
[7] CHEN Gen-liang, WANG Hao, LIN Zhong-qin. A unified approach to the accuracy analysis of planar parallel manipulators both with input uncertainties and joint clearance[J]. Mechanism and Machine Theory, 2013, 64(6):1-17.
[8] FRISOLI A, SOLAZZI M, PELLEGRINETTI D, et al. A new screw theory method for the estimation of position accuracy in spatial parallel manipulators with revolute joint clearances[J]. Mechanism and Machine Theory, 2011, 46(12):1929-1949.
[9] LIU T S, WANG J D. A reliability approach to evaluating robot accuracy performance[J]. Mechanism and Machine Theory, 1994, 29(1):83-94.
[10] BHATTI P K. Probabilistic modeling and optimal design of robotic manipulators[D]. West Lafayette:Purdue University, Department of Mechanical and Aerospace Engineering, 1989:8-16.
[11] RAO S S, BHATTI P K. Probabilistic approach to manipulator kinematics and dynamics[J]. Reliability Engineering and System Safety, 2001, 72(1):47-58.
[12] ZHU J, TING K L. Uncertainty analysis of planar and spatial robots with joint clearances[J]. Mechanism and Machine Theory, 2000, 35(9):1239-1256.
[13] KIM J, SONG W J, KANG B S. Stochastic approach to kinematic reliability of open-loop mechanism with dimensional tolerance[J]. Applied Mathematical Modelling, 2010, 34(5):1225-1237.
[14] ZHANG Jun-fu,DU Xiao-ping. Time-dependent reliability analysis for function generator mechanisms[J]. Journal of Mechanical Design, 2011, 133(3):031005.
[15] PANDEY M D,ZHANG X. System reliability analysis of the robotic manipulator with random joint clearances[J]. Mechanism and Machine Theory, 2012, 58(3):137-152.
[16] DU Xiao-ping. Time-dependent mechanism reliability analysis with envelope functions and first-order approximation[J]. Journal of Mechanical Design, 2014, 136(8):081010.
[17] ZHANG Jun-fu, WANG Jing-ge, DU Xiao-ping, et al.Time-dependent probabilistic synthesis for function generator mechanisms[J]. Mechanism & Machine Theory, 2011, 46(9):1236-1250.
[18] ZHANG Jun-fu, DU Xiao-ping. Time-dependent reliability analysis for function generation mechanisms with random joint clearances[J]. Mechanism and Machine Theory, 2015, 92:184-199.
[1] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[2] 王月朋,汪步云. 下肢外骨骼助力机器人动力学建模及实验研究[J]. 工程设计学报, 2022, 29(3): 358-369.
[3] 田为广,徐海黎,陈妍,朱倚娴,刘熙. 可变车道隔离护栏运载机器人系统及其控制策略[J]. 工程设计学报, 2022, 29(2): 237-246.
[4] 芮宏斌,李路路,曹伟,王天赐,段凯文,吴莹辉. --腿复合仿生机器人步态规划及越障性能分析[J]. 工程设计学报, 2022, 29(2): 133-142.
[5] 刘庆祥,郭冰菁,韩建海,李向攀,黄明祥. 体感交互式上肢镜像康复训练机器人系统[J]. 工程设计学报, 2022, 29(2): 143-152.
[6] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[7] 梁栋, 梁正宇, 畅博彦, 齐杨, 徐振宇. 多臂机提综臂辅助旋铆并联机器人优化设计[J]. 工程设计学报, 2022, 29(1): 28-40.
[8] 钟道方, 田颖, 张明路. 轮腿式爬壁机器人的永磁吸附装置设计与优化[J]. 工程设计学报, 2022, 29(1): 41-50.
[9] 张勤, 庞业忠, 王凯. 机器人踩踏式除草过程仿真分析与试验研究[J]. 工程设计学报, 2021, 28(6): 709-719.
[10] 郑雨辰, 鞠锋, 王旦, 孙敬滨, 王亚明, 陈柏. 航空发动机叶片检测机器人的设计与控制研究[J]. 工程设计学报, 2021, 28(5): 625-632.
[11] 郝为亮, 潘春荣, 任艳奎. 扫地机器人触发式液压辅助越障机构的设计[J]. 工程设计学报, 2021, 28(5): 569-575.
[12] 张洪, 邱晓天. 基于EtherCATROS全向移动导航系统[J]. 工程设计学报, 2021, 28(2): 241-247.
[13] 郑明军, 赵晨磊, 吴文江, 杨摄. 全地形移动机器人车身结构分析与优化[J]. 工程设计学报, 2021, 28(2): 195-202.
[14] 王昕煜, 平雪良. 基于多传感器融合信息的移动机器人速度控制方法[J]. 工程设计学报, 2021, 28(1): 63-71.
[15] 李鹏举, 毛鹏军, 耿乾, 方骞, 张家瑞, 黄传鹏. 杜仲嫁接机器人矩阵式切削系统设计与试验分析[J]. 工程设计学报, 2020, 27(6): 744-752.