| 机械设计理论与方法 |
|
|
|
|
| 基于物理信息神经网络的桥式起重机疲劳寿命预测方法 |
董青( ),党泽伟,徐格宁 |
| 太原科技大学 机械工程学院,山西 太原 030024 |
|
| Fatigue life prediction method for bridge crane based on physical-informed neural network |
Qing DONG( ),Zewei DANG,Gening XU |
| School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China |
| [1] |
高沛. 桥式起重机预测性维护系统关键技术研究[D]. 太原: 中北大学, 2023. GAO P. Bridge crane predictive maintenance system key technology research[D]. Taiyuan: North University of China, 2023.
|
| [2] |
张小丽, 陈雪峰, 李兵, 等. 机械重大装备寿命预测综述[J]. 机械工程学报, 2011, 47(11): 100-116. doi:10.3901/jme.2011.11.100 ZHANG X L, CHEN X F, LI B, et al. Review of life prediction for mechanical major equipments[J]. Journal of Mechanical Engineering, 2011, 47(11): 100-116.
doi: 10.3901/jme.2011.11.100
|
| [3] |
陈琳, 秦义校, 高梁, 等. 基于刚柔耦合动力学的铸造起重机结构疲劳寿命研究[J]. 起重运输机械, 2025(5): 29-36. CHEN L, QIN Y X, GAO L, et al. Research on fatigue life of casting crane structure based on rigid-flexible coupling dynamics[J]. Hoisting and Conveying Machinery, 2025(5): 29-36.
|
| [4] |
李现春, 胡晓兵, 李毅, 等. 基于nCode Design-Life的重型起重设备疲劳寿命预测研究[J]. 机械, 2017, 44(8): 1-6. LI X C, HU X B, LI Y, et al. Research on fatigue life prediction of heavy lifting equipment based on nCode Design-Life[J]. Machinery, 2017, 44(8): 1-6.
|
| [5] |
闫梦煜, 魏国前, 段若尘. 考虑非线性累积损伤的铸造起重机疲劳性能分析[J]. 机械强度, 2024, 46(4): 977-983. YAN M Y, WEI G Q, DUAN R C. Fatigue performance analysis of casting cranes considering non-linear cumulative damage[J]. Journal of Mechanical Strength, 2024, 46(4): 977-983.
|
| [6] |
唐涛, 张飞庆, 佘玲娟. 基于名义应力法的高强钢泵车臂架疲劳寿命研究[J]. 工程机械, 2016, 47(3): 12-17, 6. TANG T, ZHANG F Q, SHE L J. A study on fatigue life of high-strength steel pump truck boom frames based on nominal stress process[J]. Construction Machinery and Equipment, 2016, 47(3): 12-17, 6.
|
| [7] |
徐格宁, 张永才, 张魏唯. 铸造起重机金属结构疲劳裂纹扩展分析[J]. 机械设计与制造, 2020(3): 13-17. XU G N, ZHANG Y C, ZHANG W W. Fatigue crack growth analysis of metal structure of casting crane[J]. Machinery Design & Manufacture, 2020(3): 13-17.
|
| [8] |
LEHNER P, KREJSA M, PAŘENICA P, et al. Fatigue damage analysis of a riveted steel overhead crane support truss[J]. International Journal of Fatigue, 2019: 105190.
|
| [9] |
G Á, PALMA E, DE PAULA R. Crane girder fatigue life determination using SN and LEFM methods[J]. Engineering Failure Analysis, 2017, 79: 812-819.
|
| [10] |
XU B, WU Q. Stress fatigue crack propagation analysis of crane structure based on acoustic emission[J]. Engineering Failure Analysis, 2020, 109: 104206.
|
| [11] |
王大荣, 任京, 宋奎, 等. 岸桥前主梁安全监测及蠕变长短期记忆神经网络预测[J]. 湘潭大学学报(自然科学版), 2025, 47(4): 44-52. WANG D R, REN J, SONG K, et al. Safety monitoring of front girder of quayside container crane and creep prediction by long short-term memory neural network[J]. Journal of Xiangtan University (Natural Science Edition), 2025, 47(4): 44-52.
|
| [12] |
范小宁, 徐格宁, 王爱红. 基于人工神经网络获取起重机当量载荷谱的疲劳剩余寿命估算方法[J]. 机械工程学报, 2011, 47(20): 69-74. doi:10.3901/jme.2011.20.069 FAN X N, XU G N, WANG A H. Evaluation method of remaining fatigue life for crane based on the acquisition of the equivalent load spectrum by the artificial neural network[J]. Journal of Mechanical Engineering, 2011, 47(20): 69-74.
doi: 10.3901/jme.2011.20.069
|
| [13] |
戚其松, 李成刚, 董青, 等. 起重机生命周期载荷谱预测及基于疲劳寿命的结构优化设计[J]. 工程设计学报, 2023, 30(3): 380-389. QI Q S, LI C G, DONG Q, et al. Prediction of load spectrum for crane life cycle and structural optimal design based on fatigue life[J]. Chinese Journal of Engineering Design, 2023, 30(3): 380-389.
|
| [14] |
雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56. doi:10.3901/jme.2015.21.049 LEI Y G, JIA F, ZHOU X, et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21): 49-56.
doi: 10.3901/jme.2015.21.049
|
| [15] |
刘丽, 裴行智, 雷雪梅. 基于时间卷积注意力网络的剩余寿命预测方法[J]. 计算机集成制造系统, 2022, 28(8): 2375-2386. LIU L, PEI X Z, LEI X M. Temporal convolutional attention network for remaining useful life estimation[J]. Computer Integrated Manufacturing Systems, 2022, 28(8): 2375-2386.
|
| [16] |
付玲, 佘玲娟, 颜镀镭, 等. 基于内嵌物理信息与注意力机制Bi LSTM神经网络的臂架系统疲劳损伤预测模型[J]. 机械工程学报, 2024, 60(13): 205-215. doi:10.3901/jme.2024.13.205 FU L, SHE L J, YAN D L, et al. Fatigue damage prediction framework of the boom system based on embedded physical information and attention mechanism BiLSTM neural network[J]. Journal of Mechanical Engineering, 2024, 60(13): 205-215.
doi: 10.3901/jme.2024.13.205
|
| [17] |
文井辉, 伍荣森, 李帅永, 等. 基于DRSN和优化BiLSTM的轴承剩余寿命预测方法[J]. 计算机集成制造系统, 2024, 30(5): 1877-1888. WEN J H, WU R S, LI S Y, et al. Bearing residual life prediction method based on DRSN and optimized BiLSTM[J]. Computer Integrated Manufacturing Systems, 2024, 30(5): 1877-1888.
|
| [18] |
ZHOU T T, JIANG S, HAN T, et al. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network[J]. International Journal of Fatigue, 2023, 166: 107234.
|
| [19] |
孙宝晗, 颜廷俊. 基于P-S-N曲线的岸边起重机疲劳寿命预估的研究[J]. 中国水运, 2024(19): 134-136. SUN B H, YAN T J. Study on fatigue life prediction of quayside crane based on P-S-N curve[J]. China Water Transport, 2024(19): 134-136.
|
| [20] |
张剑. 桥架型起重机疲劳寿命预测和结构可靠性分析[D]. 南京: 南京航空航天大学, 2022. ZHANG J. Fatigue life prediction and structural reliability analysis of bridge crane[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022.
|
| [21] |
张颛利, 孙兴悦, 陈旭. 基于物理信息神经网络的金属多轴疲劳寿命预测进展[J]. 机械强度, 2025, 47(2): 44-52. ZHANG Z L, SUN X Y, CHEN X. Development in metal multiaxial fatigue life prediction based on physics-informed neural network[J]. Journal of Mechanical Strength, 2025, 47(2): 44-52.
|
| [22] |
WEI W, CHEN S J, CHEN C, et al. HEN: a novel hybrid explainable neural network based framework for robust network intrusion detection[J]. Science China Information Sciences, 2024, 67(7): 170304.
|
| [23] |
WEN J, DENG Y Q, PENG W L, et al. Linguistic steganalysis via fusing multi-granularity attentional text features[J]. Chinese Journal of Electronics, 2023, 32(1): 76-84.
|
| [24] |
中国机械工业联合会. 起重机械安全评估规范 通用要求: [S]. 北京: 中国标准出版社, 2022. China Machinery Industry Federation. Safety assessment rules for lifting appliances—General requirements: [S]. Beijing: Standards Press of China, 2022.
|
| [25] |
LI J H, LI B. Solving forward and inverse problems of the nonlinear Schrödinger equation with the generalized- symmetric Scarf-II potential via PINN deep learning[J]. Communications in Theoretical Physics, 2021, 73(12): 125001.
|
| [26] |
乌云图, 李娜, 蔡晋辉. 岸边集装箱桥式起重机疲劳寿命预测[J]. 中国测试, 2018, 44(4): 14-18. WU Y T, LI N, CAI J H. The fatigue life prediction of quayside container bridge crane[J]. China Measurement & Test, 2018, 44(4): 14-18.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|