Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (6): 831-838    DOI: 10.3785/j.issn.1006-754X.2025.05.135
优化设计     
空间望远镜焦平面基板结构热-力耦合双目标拓扑优化设计
曹雪虎(),纪敬虎()
江苏大学 机械工程学院,江苏 镇江 212013
Dual-objective topology optimization design for focal plane substrate structure of space telescope with thermo-mechanical coupling
Xuehu CAO(),Jinghu JI()
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
 全文: PDF(4504 KB)   HTML
摘要:

针对空间望远镜焦平面基板结构刚度、热稳定性与轻量化的协同设计难题,通过拓扑优化方法对其进行优化设计。以某大型空间望远镜焦平面基板结构为优化对象,构建了以柔度最小化和温度梯度最小化为目标函数的拓扑优化数学模型,并采用层次分析法确定目标的权重系数。随后,使用COMSOL Multiphysics软件进行求解,得到了基板结构的拓扑优化结果。最后,基于优化结果对基板结构进行重构,并进行了有限元仿真验证。结果表明:与原始基板相比,优化后基板的质量减小了39.94%,最大位移减小了4.92%,基频达到801.2 Hz,满足设计要求,同时实现了轻量化目标。研究结果为其余工程结构的轻量化设计提供了参考。

关键词: 焦平面基板结构热-力耦合双目标拓扑优化层次分析法有限元仿真    
Abstract:

Aiming at the collaborative design challenge of stiffness, thermal stability and lightweight for the focal plane substrate structure in space telescopes, the topology optimization method is adopted to conduct optimization design. Taking the focal plane substrate structure of a large space telescope as the optimization object, a topological optimization mathematical model with dual objective functions of minimizing compliance and temperature gradient was established, and the analytic hierarchy process was employed to determine the weight coefficients of objectives. Subsequently, the COMSOL Multiphysics software was used for solution, and the topological optimization results of the substrate structure were obtained. Finally, the substrate structure was reconstructed based on the optimization results and validated through finite element simulation. The results demonstrated that compared with the original substrate, the optimized substrate achieved a 39.94% reduction in mass, a 4.92% decrease in maximum displacement, and a fundamental frequency of 801.2 Hz, thereby meeting design requirements and achieving the lightweight goal. The research results provide a reference for the lightweight design of other engineering structures.

Key words: focal plane substrate structure    thermo-mechanical coupling    dual-objective topology optimization    analytic hierarchy process    finite element simulation
收稿日期: 2025-05-07 出版日期: 2025-12-30
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(52075225);江苏省高等学校自然科学基金资助项目(24KJB460009)
通讯作者: 纪敬虎     E-mail: 1436412487@qq.com;jijinghu@ujs.edu.cn
作者简介: 曹雪虎(1997—),男,硕士生,从事结构轻量化研究,E-mail: 1436412487@qq.com,https://orcid.org/0009-0004-4697-588X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹雪虎
纪敬虎

引用本文:

曹雪虎,纪敬虎. 空间望远镜焦平面基板结构热-力耦合双目标拓扑优化设计[J]. 工程设计学报, 2025, 32(6): 831-838.

Xuehu CAO,Jinghu JI. Dual-objective topology optimization design for focal plane substrate structure of space telescope with thermo-mechanical coupling[J]. Chinese Journal of Engineering Design, 2025, 32(6): 831-838.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.135        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I6/831

图1  初始空间望远镜焦平面基板结构示意
相对重要性赋值
同等重要1
稍微重要3
明显重要5
强烈重要7
极端重要9
表1  标度法的赋值规则
因素柔度温度梯度
柔度19
温度梯度1/91
表2  判断矩阵
图2  基板结构热-力耦合双目标拓扑优化流程
图3  基板结构拓扑优化目标函数的变化曲线
图4  优化后基板结构多切面单元密度分布云图
图5  双目标优化重构后的基板结构
图6  优化前后基板结构的位移分布云图
图7  优化前后基板结构的von Mises应力分布云图
图8  优化前后基板结构的热应变分布云图
对比项最大位移/10-3 mm最大应力/MPa最大热应变/10-5

最大温度梯度/

(K/mm)

基频/Hz质量/kg
变化幅度/%-4.92+367.89+10.22+22.67-21.54-39.94
优化前1.2221.81.860.034 41 021.13.220
优化后1.16102.02.050.042 2801.21.934
表3  优化前后基板结构的性能对比
图9  优化后基板结构的实物图
[1] SAVITSKIĬ A M, SOKOLOV I M. Questions of constructing lightened primary mirrors of space telescopes[J]. Journal of Optical Technology, 2009, 76(10): 666-669.
[2] FEINBERG L D, DEAN B H, HAYDEN W L, et al. Space telescope design considerations[J]. Optical Engineering, 2012, 51(1): 011006.
[3] MARTIN L. Hubble space telescope: servicing mission 3A media reference guide[EB/OL]. [2025-04-17]. .
[4] BELY P Y. The design and construction of large optical telescopes[M]. New York: Springer, 2003.
[5] MICHELL A G M. The limits of economy of material in frame-structures[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1904, 8(47): 589-597.
[6] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224.
[7] SIGMUND O. Design of material structures using topology optimization[D]. Lyngby: Technical University of Denmark, 1994.
[8] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
[9] XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures, 1993, 49(5): 885-896.
[10] 刘伟, 朱祥, 高婷, 等. 齿轮箱体静动态特性分析与多目标拓扑优化[J]. 机械强度, 2025, 47(2): 94-102.
LIU W, ZHU X, GAO T, et al. Static and dynamic characteristic analysis and multi-objective topology optimization of gearbox[J]. Journal of Mechanical Strength, 2025, 47(2): 94-102.
[11] 韩博文, 宋桂珍, 甄洪磊, 等. 某机载雷达支架轻量化与结构拓扑优化研究[J]. 机械设计与制造, 2025(7): 110-116.
HAN B W, SONG G Z, ZHEN H L, et al. Research on lightweight and structural topology optimization of an airborne radar support[J]. Machinery Design & Manufacture, 2025(7): 110-116.
[12] 沈保山, 钟兵, 孙强, 等. 双前桥液压助力转向摇臂支架轻量化设计[J]. 机械设计与制造, 2024(11): 285-289.
SHEN B S, ZHONG B, SUN Q, et al. Lightweight design of double front axle hydraulic power steering rocker arm bracket[J]. Machinery Design & Manufacture, 2024(11): 285-289.
[13] ZENG A X, LI F. Optimal design of rectangular mirror based on topology and size optimization[C]// Applied Optics and Photonics China 2022. Beijing, Dec. 18-20, 2022.
[14] MAO Z Y, YAN S K. Design and analysis of the thermal-stress coupled topology optimization of the battery rack in an AUV[J]. Ocean Engineering, 2018, 148: 401-411.
[15] 张小强, 鲁碧为, 刘家琴, 等. 聚变堆偏滤器拓扑优化设计与稳态热分析[J]. 工程设计学报, 2023, 30(5): 601-607.
ZHANG X Q, LU B W, LIU J Q, et al. Topology optimization design and steady-state thermal analysis of fusion reactor divertor[J]. Chinese Journal of Engineering Design, 2023, 30(5): 601-607.
[16] 田立勇, 敖华, 于宁, 等. 更换托辊机器人履带式底盘的仿真与优化[J]. 工程设计学报, 2024, 31(5): 603-613.
TIAN L Y, AO H, YU N, et al. Simulation and optimization of crawler chassis of idler replacement robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 603-613.
[17] 郭伟超, 李辉, 李丙震, 等. 热力耦合情况下的导弹导引头多尺度并行拓扑优化设计方法[J]. 航空动力学报, 2024, 39(5): 186-194.
GUO W C, LI H, LI B Z, et al. Multi-scale parallel topology optimization design method for missile seeker with thermo-dynamic coupling loads[J]. Journal of Aerospace Power, 2024, 39(5): 186-194.
[18] 叶帅, 曾议, 鲁晓峰, 等. 星载临边光谱仪反射镜组件优化设计分析[J]. 光子学报, 2024, 53(11): 122-138.
YE S, ZENG Y, LU X F, et al. Optimization design of the spaceborne edge spectral imager reflective mirror assembly[J]. Acta Photonica Sinica, 2024, 53(11): 122-138.
[19] 朱兆基, 樊勋, 董龙雷, 等. 液体火箭发动机典型承力结构动态拓扑优化设计[J]. 航天器环境工程, 2025, 42(2): 152-158.
ZHU Z J, FAN X, DONG L L, et al. Dynamic topology optimization design of typical load-bearing structures in liquid rocket engines[J]. Spacecraft Environment Engineering, 2025, 42(2): 152-158.
[20] 罗苇杰, 杨华实, 王猛, 等. 基于加权系数分配的火炮座圈优化设计[J]. 兵器装备工程学报, 2025, 46(2): 56-62.
LUO W J, YANG H S, WANG M, et al. Optimal design of artillery seat based on weighting coefficient distribution[J]. Journal of Ordnance Equipment Engineering, 2025, 46(2): 56-62.
[21] 丁华锋, 李红兵, 陈朝鹰, 等. 汽车悬架下节叉多工况结构拓扑优化设计[J]. 机械科学与技术, 2025, 44(7): 1207-1214.
DING H F, LI H B, CHEN C Y, et al. Structural topology optimization design of automotive suspension lower knuckle fork under multiple conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2025, 44(7): 1207-1214.
[22] 王康. 基于层次分析法的信息系统安全风险评估方法研究[D]. 合肥: 安徽建筑大学, 2024.
WANG K. Research on information system security risk assessment method based on analytic hierarchy process[D]. Hefei: Anhui Jianzhu University, 2024.
[1] 张萌,朱禹清,杨培基,吴垚. 二维压电精密运动平台行程与频率的协同优化设计[J]. 工程设计学报, 2025, 32(5): 675-685.
[2] 吴田,吴滨帆,邱中华,彭勇,朱祥. 基于改进MOMVO算法的大荷载绝缘拉棒端头多目标优化[J]. 工程设计学报, 2025, 32(5): 696-707.
[3] 杜健,祝锡晶,李婧. 基于压电陶瓷驱动的二维精密定位平台设计及分析[J]. 工程设计学报, 2025, 32(2): 199-207.
[4] 徐美娟,汪启亮,洪永烽,龙益平,刘通,郭彬. 嵌套余弦函数型多轴柔性铰链的设计与分析[J]. 工程设计学报, 2025, 32(2): 252-261.
[5] 徐智皓,陆晓伟,谢雨欣,赖磊捷. 音圈电机驱动的三自由度大行程柔性偏摆台设计与分析[J]. 工程设计学报, 2025, 32(1): 82-91.
[6] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[7] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[8] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[9] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[10] 李阳, 聂羽飞. 钠燃烧试验厂房隔热密封门的设计与分析[J]. 工程设计学报, 2022, 29(1): 115-122.
[11] 严国平, 周俊宏, 钟飞, 李哲, 周宏娣, 彭震奥. 纸塑复合袋磁力压紧纠偏装置设计及优化[J]. 工程设计学报, 2021, 28(3): 367-373.
[12] 刘永江, 彭宣霖, 唐雄辉, 李华, 齐紫梅. 轴流散热风机共振失效分析与优化设计[J]. 工程设计学报, 2021, 28(2): 203-209.
[13] 李玄, 周双武, 路松, 丁冰晓. 基于二级杠杆机构的二自由度微定位平台设计与分析[J]. 工程设计学报, 2020, 27(4): 533-540.
[14] 李耀华, 张海峰, 魏启东. 基于EAHP-FCE方法的民机修理级别确定模型[J]. 工程设计学报, 2019, 26(5): 544-551.
[15] 张根保, 徐付伟, 冉琰, 章小刚. 机械结构相似度评价及可靠性预计研究[J]. 工程设计学报, 2017, 24(3): 264-272.