Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (1): 158-168    DOI: 10.3785/j.issn.1008-973X.2026.01.015
    
Improved sliding mode active disturbance rejection control for grid-forming photovoltaic hybrid power conversion system
Yueming LIU(),Jinfeng HUANG*(),Zhenyang HU,Ruize XUE,Xing LI
School of Electrical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Download: HTML     PDF(2268KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An improved sliding mode active disturbance rejection control strategy based on the quasi-continuous algorithm was proposed by utilizing the virtual synchronous generator (VSG) technology to address the issue that the traditional linear control strategy of photovoltaic hybrid power conversion system (PV-HPCS) was difficult to achieve ideal control effect in terms of power and voltage fluctuation suppression, and to improve the performance of PV-HPCS, to stabilize the power fluctuation of the grid and maintain the stability of bus voltage. The VSG was integrated with the dual closed-loop control strategy of voltage and current. The PI control was adopted in the voltage outer loop to provide reference values for the current inner loop. A high-order super-twisting sliding mode observer (HO-STSMO) which realized higher response speed and tracking accuracy was adopted in the current inner loop. The quasi-continuous integral terminal sliding mode controller (QC-ITSMC) was introduced in the form of dual sliding mode switching control law, and an improved exponential reaching law was designed to smooth the system control signal and improve the robustness of the system. The simulation model and experimental platform were built, and the experimental results showed that the improved control strategy effectively suppressed the power fluctuation of the grid and improved the stability of the system.



Key wordsphotovoltaic hybrid power conversion system      virtual synchronous generator      high-order super-twisting sliding mode observer      quasi-continuous algorithm      exponential reaching law     
Received: 25 December 2024      Published: 15 December 2025
CLC:  TM 46  
Fund:  陕西省自然科学研究资助项目(2023-JC-YB-442);陕西理工大学研究生创新基金资助项目(SLGYCX2539).
Corresponding Authors: Jinfeng HUANG     E-mail: 2219240462@qq.com;jfhuang2000@163.com
Cite this article:

Yueming LIU,Jinfeng HUANG,Zhenyang HU,Ruize XUE,Xing LI. Improved sliding mode active disturbance rejection control for grid-forming photovoltaic hybrid power conversion system. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 158-168.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.01.015     OR     https://www.zjujournals.com/eng/Y2026/V60/I1/158


构网型光伏混合储能变流器的改进滑模自抗扰控制

光伏混合储能变流器(PV-HPCS)的传统线性控制策略在功率及电压波动抑制方面难以达到理想控制效果. 为了提升光伏混合储能变流器的性能,平抑电网功率波动,维持母线电压稳定,基于虚拟同步发电机(VSG)技术,提出基于拟连续算法的改进滑模自抗扰控制策略. VSG与电压电流双闭环策略相配合. 在电压外环采用PI控制,为电流内环提供参考值;在电流内环采用高阶超螺旋滑模观测器(HO-STSMO),实现更优的响应速度与跟踪精度. 采用双滑模切换控制律形式,引入拟连续积分终端滑模控制器(QC-ITSMC),并设计改进指数趋近律,以平滑系统控制信号,提升系统鲁棒性. 搭建仿真模型和实验平台. 实验结果表明,改进控制策略有效抑制了电网功率波动,提高了系统运行稳定性.


关键词: 光伏混合储能变流器,  虚拟同步发电机,  高阶超螺旋滑模观测器,  拟连续算法,  指数趋近律 
Fig.1 Main circuit topology of photovoltaic hybrid power conversion system
Fig.2 P-f speed control block diagram
Fig.3 Q-E excitation control block diagram
Fig.4 Comparison of hyperbolic function F(ei) with sgn (x)
Fig.5 Comparison of sliding mode chattering and tracking error
Fig.6 Working principle of IQC-ITSMC
Fig.7 Current inner loop control block diagram
Fig.8 Control structure diagram of photovoltaic hybrid power conversion system
参数数值参数数值
Lb、Lp、Lc/mH6fn/Hz50
Cdc/mF20ω0/(rad·s?1)100π
udc/V1 500L/mH4
ug/V380C/μF10
Lg/mH1.2R0.05
Tab.1 Circuit model parameters
参数数值参数数值
J/(kg·m2)3.2κ4
D/(N·s·m?1)47.75λ20
kf/(W·Hz?1)25.46$ {\varsigma _1} $15
kQ/(var·V?1)1 154.7$ {\varsigma _2} $50
n3ld5
bdobqo22lq300
ωdoωqo/(rad·s?1)300η33
ξ0.1$ \varepsilon $0.1
Tab.2 Controller parameters
Fig.9 Output power of photovoltaic power supply under varying solar irradiance
Fig.10 Response of DC bus voltage under photovoltaic fluctuation
Fig.11 Transient response of system to sudden changes in active power command
Fig.12 Schematic diagram of HIL experimental platform
Fig.13 Experimental waveforms of bus voltage under photovoltaic fluctuation
E/(W·m?2)控制策略Δu/VΔt/ms
1 200→800→1 000
(工况1)
传统SMC4125580540
IQC-ITSMC1310330280
800→1 200→1 000
(工况2)
传统SMC4223660460
IQC-ITSMC149360280
Tab.3 Comparison of transient performance of bus voltage under photovoltaic fluctuation
Fig.14 Experimental waveforms of system response to abrupt power command changes
Pref/kW控制策略ΔP/kWΔt/ms
135→165→150
(工况1)
传统SMC10.6350310
IQC-ITSMC180170
165→135→150
(工况2)
传统SMC10.7360270
IQC-ITSMC170150
Tab.4 Transient performance comparison of system active power response to abrupt changes in active power command
Pref/kW控制策略Δu/VΔt/ms
135→165→150
(工况1)
传统SMC3419540370
IQC-ITSMC1715370290
165→135→150
(工况2)
传统SMC2916530340
IQC-ITSMC1712310290
Tab.5 Transient performance comparison of system voltage response to abrupt changes in active power command
[1]   黄萌, 舒思睿, 李锡林, 等 面向同步稳定性的电力电子并网变流器分析与控制研究综述[J]. 电工技术学报, 2024, 39 (19): 5978- 5994
HUANG Meng, SHU Sirui, LI Xilin, et al A review of synchronization-stability-oriented analysis and control of power electronic grid-connected converters[J]. Transactions of China Electrotechnical Society, 2024, 39 (19): 5978- 5994
[2]   孙华东, 赵兵, 徐式蕴, 等 高比例电力电子电力系统强度的定义、分类及分析方法[J]. 中国电机工程学报, 2024, 44 (18): 7039- 7049
SUN Huadong, ZHAO Bing, XU Shiyun, et al Definition, classification, and analysis method of the strength of power system integrated with high penetration of power electronics[J]. Proceedings of the CSEE, 2024, 44 (18): 7039- 7049
[3]   周孝信, 赵强, 张玉琼, 等 “双碳”目标下我国能源电力系统发展趋势分析: 绿电替代与绿氢替代[J]. 中国电机工程学报, 2024, 44 (17): 6707- 6721
ZHOU Xiaoxin, ZHAO Qiang, ZHANG Yuqiong, et al Analysis of the development trend of China’s energy and power system under the dual carbon target: green electricity substitution and green hydrogen substitution[J]. Proceedings of the CSEE, 2024, 44 (17): 6707- 6721
[4]   孙秋野, 于潇寒, 王靖傲 “双高”配电系统的挑战与应对措施探讨[J]. 中国电机工程学报, 2024, 44 (18): 7115- 7136
SUN Qiuye, YU Xiaohan, WANG Jing’ao Discussion on challenges and countermeasures of “double high” power distribution system[J]. Proceedings of the CSEE, 2024, 44 (18): 7115- 7136
[5]   皇金锋, 周杰, 黄红杰 基于滑模自抗扰的储能变流器控制策略[J]. 浙江大学学报: 工学版, 2024, 58 (10): 2171- 2181
HUANG Jinfeng, ZHOU Jie, HUANG Hongjie Control strategy of power conversion system based on sliding mode active disturbance rejection control[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (10): 2171- 2181
[6]   郭磊磊, 贾凯阳, 朱虹, 等 基于有功微分补偿与虚拟惯量自适应的光储VSG控制策略[J]. 电力系统保护与控制, 2024, 52 (10): 21- 31
GUO Leilei, JIA Kaiyang, ZHU Hong, et al Control strategy for a PV energy storage VSG based on active power differential compensation and virtual inertia adaptive strategy[J]. Power System Protection and Control, 2024, 52 (10): 21- 31
[7]   GONG Z, SU Y, CAI R, et al. An adaptive control strategy for vsg based on energy storage capacity optimization of MMC-BESS [J]. Electrical Engineering, 2024: 1–14.
[8]   VENKATESWARI R, SREEJITH S Factors influencing the efficiency of photovoltaic system[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 376- 394
doi: 10.1016/j.rser.2018.11.012
[9]   周杰, 皇金锋, 黄红杰 光储一体化变流器改进滑模自抗扰控制[J]. 电工技术学报, 2025, 40 (2): 504- 516
ZHOU Jie, HUANG Jinfeng, HUANG Hongjie Improved sliding mode active disturbance rejection control strategy for PV-storage integrated converter[J]. Transactions of China Electrotechnical Society, 2025, 40 (2): 504- 516
[10]   WANG P, LU J, WU Y, et al A novel cooperative control for SMES/battery hybrid energy storage in PV grid-connected system[J]. IEEE Transactions on Applied Superconductivity, 2024, 34 (8): 1- 5
[11]   王新菊, 王小敏 双重化PWM整流器自抗扰模型预测直接功率控制[J]. 电力系统保护与控制, 2024, 52 (7): 45- 56
WANG Xinju, WANG Xiaomin Active disturbance rejection control-based model predictive direct power control for dual PWM rectifiers[J]. Power System Protection and Control, 2024, 52 (7): 45- 56
[12]   王舒, 郑世强 基于复合控制的磁悬浮CMG动框架效应抑制[J]. 北京航空航天大学学报, 2020, 46 (12): 2339- 2347
WANG Shu, ZHENG Shiqiang Composite control method for gimbal excitation effect suppression of magnetically suspended CMGs[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (12): 2339- 2347
[13]   谭草, 鲁应涛, 葛文庆, 等 直驱式永磁直线电机深度模糊滑模-自抗扰控制[J]. 西安交通大学学报, 2023, 57 (1): 185- 194
TAN Cao, LU Yingtao, GE Wenqing, et al Depth fuzzy sliding-mode active disturbance rejection control method of permanent magnet linear motor for direct drive system[J]. Journal of Xi’an Jiaotong University, 2023, 57 (1): 185- 194
doi: 10.7652/xjtuxb202301018
[14]   许玉龙, 鄂斌, 王小刚, 等 一种高超声速飞行器固定时间滑模控制方法[J]. 宇航学报, 2024, 45 (4): 560- 570
XU Yulong, E Bin, WANG Xiaogang, et al A fixed-time sliding-mode control method for hypersonic vehicle[J]. Journal of Astronautics, 2024, 45 (4): 560- 570
doi: 10.3873/j.issn.1000-1328.2024.04.008
[15]   赵凯辉, 易金武, 刘文昌, 等 一种永磁同步电机无模型超螺旋快速终端滑模控制方法[J]. 电力系统保护与控制, 2023, 51 (22): 88- 98
ZHAO Kaihui, YI Jinwu, LIU Wenchang, et al A model-free super-twisting fast terminal sliding mode control method for a permanent magnet synchronous motor[J]. Power System Protection and Control, 2023, 51 (22): 88- 98
[16]   夏济宇, 周洲, 王正平, 等 基于NLESO的倾转动力无人机垂直起降模态轨迹跟踪控制[J]. 西北工业大学学报, 2023, 41 (1): 1- 10
XIA Jiyu, ZHOU Zhou, WANG Zhengping, et al Trajectory tracking control of tilt-propulsion UAV vertical take-off and landing mode based on NLESO[J]. Journal of Northwestern Polytechnical University, 2023, 41 (1): 1- 10
doi: 10.3969/j.issn.1000-2758.2023.01.001
[17]   皇金锋, 杨振宇 基于有限时间观测器的光储系统母线电压互补滑模控制[J]. 湖南大学学报: 自然科学版, 2024, 51 (2): 12- 21
HUANG Jinfeng, YANG Zhenyu Finite-time observer-based sliding mode control of bus voltage complementarity in optical storage systems[J]. Journal of Hunan University: Natural Sciences, 2024, 51 (2): 12- 21
[18]   杨玉杰, 范其明, 吕书豪 基于拟连续高阶滑模方法的AGC系统控制[J]. 计算机应用与软件, 2019, 36 (9): 134- 139
YANG Yujie, FAN Qiming, LÜ Shuhao Control of AGC system based on quasi-continuous high-order sliding mode method[J]. Computer Applications and Software, 2019, 36 (9): 134- 139
doi: 10.3969/j.issn.1000-386x.2019.09.024
[19]   沈艳霞, 罗昌茜 基于超螺旋滑模观测器的永磁同步直线电机无模型控制[J]. 电力系统保护与控制, 2023, 51 (18): 62- 69
SHEN Yanxia, LUO Changxi Model-free control of a permanent magnet linear synchronous motor based on a super-twisting sliding mode observer[J]. Power System Protection and Control, 2023, 51 (18): 62- 69
[20]   VAN M, KANG H J, SUH Y S, et al Output feedback tracking control of uncertain robot manipulators via higher-order sliding-mode observer and fuzzy compensator[J]. Journal of Mechanical Science and Technology, 2013, 27 (8): 2487- 2496
doi: 10.1007/s12206-013-0636-3
[21]   CHALANGA A, KAMAL S, FRIDMAN L M, et al Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (6): 3677- 3685
doi: 10.1109/TIE.2016.2523913
[22]   MORENO J A. Lyapunov function for levant’s second order differentiator [C]// Proceedings of the IEEE 51st IEEE Conference on Decision and Control. Maui: IEEE, 2012: 6448–6453.
[23]   陈冬, 钱林方, 陈志群, 等 基于改进拟连续算法的回转弹仓位置控制[J]. 兵工学报, 2024, 45 (5): 1436- 1448
CHEN Dong, QIAN Linfang, CHEN Zhiqun, et al An improved quasi-continuous algorithm for rotational shell magazine position control[J]. Acta Armamentarii, 2024, 45 (5): 1436- 1448
[1] Jinfeng HUANG,Jie ZHOU,Hongjie HUANG. Control strategy of power conversion system based on sliding mode active disturbance rejection control[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2171-2181.
[2] Ai-guo WU,Shao-hua WU,Na DONG. Nonsingular fast terminal sliding model fuzzy control of robotic manipulators[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 862-871.
[3] LI Xin, XIAO Long, LIU Guo-liang, SHAO Yu-ting, CHEN Guo-zhu. VSG power oscillation suppression strategies based on phase compensation and cross feedforward compensation[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 569-576.