|
|
Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection |
Wenxin CHENG( ),Guanghui YAN*( ),Wenwen CHANG,Baijing WU,Yaning HUANG |
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
|
Abstract A multimodal feature fusion model based on non-smooth non-negative matrix factorization (nsNMF-PCNN-GRU-MSA) was proposed to address the problems of poor generalisation ability, single feature extraction mode and model uninterpretability in the fatigue driving detection methods. This model detected the level of driver fatigue by analyzing electroencephalogram (EEG) signals. A channel weighting module was designed in the shallow layer of the network, and the non-smooth non-negative matrix factorization (nsNMF) algorithm was introduced to compute the contribution of the electrode channels. A multimodal feature fusion module was designed in the middle layer of the network, where the Gramian angular field imaging method was introduced to map the 1D EEG data into a 2D image, and the spatio-temporal features of different modes were fused in parallel with the PCNN-GRU module. The multi-head self-attention (MSA) mechanism was fused in the deep layer of the network to complete the task of fatigue driving state classification. The experimental results showed that the fatigue detection accuracies of the model on the mixed samples of the SEED-VIG and SAD datasets were 93.37% and 90.78%, respectively, and the lowest accuracies for single-subject data were 86.60% and 85.59%, respectively, which were higher than those of the state-of-the-art models. The analysis method of mapping the feature activation values onto the brain topology map not only improves the interpretability of the model, but also provides a new perspective on fatigue driving detection.
|
Received: 20 November 2024
Published: 25 August 2025
|
|
Fund: 国家自然科学基金资助项目(62466032, 62366028, 62062049);甘肃省自然科学基金资助项目(24JRRA256);甘肃省教育厅青年博士项目(2023QB-038);青海省昆仑英才高端创新创业人才计划资助项目(QHKLYC-GDCXCY-2022-171). |
Corresponding Authors:
Guanghui YAN
E-mail: xncycwx@163.com;yanguanghui@mail.lzjtu.cn
|
基于通道加权的多模态特征融合用于EEG疲劳驾驶检测
针对疲劳驾驶检测方法泛化能力差、特征提取模式单一、模型不可解释等问题,提出多模态特征融合模型nsNMF-PCNN-GRU-MSA,通过分析驾驶员脑电图(EEG)信号实现疲劳程度的检测. 在网络浅层设计通道加权模块,引入非平滑非负矩阵分解(nsNMF)算法计算电极通道的贡献度;在网络中层设计多模态特征融合模块,引入格拉姆角场成像方法将一维EEG数据映射成二维图像,并采用PCNN-GRU并行方式融合不同模态的时空特征;在网络深层融合多头自注意力机制(MSA),完成疲劳驾驶状态分类任务. 实验结果表明,该模型在数据集SEED-VIG和SAD的混合样本上的疲劳检测准确率分别为93.37%、90.78%,单个被试数据准确率最低分别为86.60%、85.59%,高于近年先进模型. 将特征激活值映射到大脑拓扑图上的分析方法不仅提高了模型的可解释性,而且为疲劳驾驶检测提供了新视角.
关键词:
EEG,
疲劳驾驶检测,
nsNMF,
格拉姆角场,
多模态特征融合,
模型可解释性
|
|
[1] |
HAN W, ZHAO J Driver behaviour and traffic accident involvement among professional urban bus drivers in China[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 74 (1): 184- 197
|
|
|
[2] |
SINGH S. Critical reasons for crashes investigated in the national motor vehicle crash causation survey [EB/OL]. (2015-03-19). https://trid.trb.org/view/1346216.
|
|
|
[3] |
COETZER R C, HANCKE G P. Eye detection for a real-time vehicle driver fatigue monitoring system [C]// 2011 IEEE Intelligent Vehicles Symposium (IV). Baden-Baden: IEEE, 2011: 66–71.
|
|
|
[4] |
ZONG S, DONG F, CHENG Y, et al Application and challenges of EEG signals in fatigue driving detection[J]. Progress in Biochemistry and Biophysics, 2024, 51 (7): 1645- 1669
|
|
|
[5] |
PENG B, ZHANG Y, WANG M, et al T-A-MFFNet: multi-feature fusion network for EEG analysis and driving fatigue detection based on time domain network and attention network[J]. Computational Biology and Chemistry, 2023, 104: 107863
doi: 10.1016/j.compbiolchem.2023.107863
|
|
|
[6] |
ALTAHERI H, MUHAMMAD G, ALSULAIMAN M, et al Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35 (20): 14681- 14722
doi: 10.1007/s00521-021-06352-5
|
|
|
[7] |
WU E Q, ZHU L M, ZHANG W M, et al Novel nonlinear approach for real-time fatigue EEG data: an infinitely warped model of weighted permutation entropy[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (6): 2437- 2448
|
|
|
[8] |
WANG F, WU S, ZHANG W, et al Multiple nonlinear features fusion based driving fatigue detection[J]. Biomedical Signal Processing and Control, 2020, 62 (4): 102075
doi: 10.1016/j.bspc.2020.102075
|
|
|
[9] |
WU E Q, XIONG P, TANG Z R, et al Detecting dynamic behavior of brain fatigue through 3-D-CNN-LSTM[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (1): 90- 100
doi: 10.1109/TSMC.2021.3062715
|
|
|
[10] |
YANG Y, WU Q, FU Y, et al. Continuous convolutional neural network with 3D input for EEG-based emotion recognition [C]// Neural Information Processing: 25th International Conference. Cambodia: Springer, 2018: 433–443.
|
|
|
[11] |
王海玉, 王映龙, 闵建亮, 等 集成3种不同核分类器的疲劳脑电分类[J]. 计算机工程与设计, 2019, 40 (6): 1757- 1762 WANG Haiyu, WANG Yinglong, MIN Jianliang, et al Fatigue EEG classification by integrating three different kernel classifiers[J]. Computer Engineering and Design, 2019, 40 (6): 1757- 1762
|
|
|
[12] |
CHAUDHURI A, ROUTRAY A Driver fatigue detection through chaotic entropy analysis of cortical sources obtained from scalp EEG signals[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (1): 185- 198
|
|
|
[13] |
常文文, 闫光辉, 杨志飞, 等. 基于脑电熵值特征和功能连接的不同线型道路下驾驶状态检测 [J]. 电子学报, 2023, 51(10): 2874–2883. CHANG Wenwen, YAN Guanghui, YANG Zhifei, et al. Detection of driving state under different curve road based on entropy and functional connectivity of EEG [J]. Acta Electronica Sinica, 2023, 51(10): 2874–2883.
|
|
|
[14] |
SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38 (11): 5391- 5420
doi: 10.1002/hbm.23730
|
|
|
[15] |
GAO D, LI P, WANG M, et al CSF-GTNet: a novel multi-dimensional feature fusion network based on Convnext-GeLU-BiLSTM for EEG-signals-enabled fatigue driving detection[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28 (5): 2558- 2568
doi: 10.1109/JBHI.2023.3240891
|
|
|
[16] |
SHI J, WANG K Fatigue driving detection method based on time-space-frequency features of multimodal signals[J]. Biomedical Signal Processing and Control, 2023, 84 (11): 104744
|
|
|
[17] |
JIA H, XIAO Z, JI P End-to-end fatigue driving EEG signal detection model based on improved temporal-graph convolution network[J]. Computers in Biology and Medicine, 2023, 152 (1): 106431
|
|
|
[18] |
ZHENG W L, LU B L A multimodal approach to estimating vigilance using EEG and forehead EOG[J]. Journal of Neural Engineering, 2017, 14 (2): 026017
doi: 10.1088/1741-2552/aa5a98
|
|
|
[19] |
DINGES D F, PACK F, WILLIAMS K, et al Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night[J]. Sleep, 1997, 20 (4): 267- 277
|
|
|
[20] |
CAO Z, CHUANG C H, KING J K, et al Multi-channel EEG recordings during a sustained-attention driving task[J]. Scientific Data, 2019, 6 (1): 19
doi: 10.1038/s41597-019-0027-4
|
|
|
[21] |
ZHANG X, YAO L, KANHERE S S, et al Mindid: person identification from brain waves through attention-based recurrent neural network[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2 (3): 149
|
|
|
[22] |
LI X, TANG J, LI X, et al CWSTR-Net: a channel-weighted spatial-temporal residual network based on nonsmooth nonnegative matrix factorization for fatigue detection using EEG signals[J]. Biomedical Signal Processing and Control, 2024, 97 (6): 106685
|
|
|
[23] |
WANG F, MA M, ZHANG X Study on a portable electrode used to detect the fatigue of tower crane drivers in real construction environment[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2506914
|
|
|
[24] |
仝航, 杨燕, 江永全 检测脑电癫痫的多头自注意力机制神经网络[J]. 计算机科学与探索, 2023, 17 (2): 442- 452 TONG Hang, YANG Yan, JIANG Yongquan Multi-head self-attention neural network for detecting EEG epilepsy[J]. Computer Science and Exploration, 2023, 17 (2): 442- 452
|
|
|
[25] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Advances in Neural Information Processing Systems. California: IEEE, 2017: 6000–6010.
|
|
|
[26] |
HIDALGO ROGEL J M, MARTÍNEZ BELTRÁN E T, QUILES PÉREZ M, et al Studying drowsiness detection performance while driving through scalable machine learning models using electroencephalography[J]. Cognitive Computation, 2024, 16 (3): 1253- 1267
|
|
|
[27] |
HOCHREITER S Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
|
|
[28] |
ZENG H, YANG C, DAI G, et al EEG classification of driver mental states by deep learning[J]. Cognitive Neurodynamics, 2018, 12 (6): 597- 606
|
|
|
[29] |
INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces [C]// 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Toronto: IEEE, 2020: 2958–2965.
|
|
|
[30] |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013
doi: 10.1088/1741-2552/aace8c
|
|
|
[31] |
GAO Z, WANG X, YANG Y, et al EEG-based spatio-temporal convolutional neural network for driver fatigue evaluation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (9): 2755- 2763
doi: 10.1109/TNNLS.2018.2886414
|
|
|
[32] |
BAGHERZADEH S, SHALBAF A EEG-based schizophrenia detection using fusion of effective connectivity maps and convolutional neural networks with transfer learning[J]. Cognitive Neurodynamics, 2024, 18 (5): 2767- 2778
doi: 10.1007/s11571-024-10121-0
|
|
|
[33] |
周逸凡, 张灵维, 周正东, 等 基于注意力机制和深度学习的群体语言想象脑电信号分类[J]. 浙江大学学报: 工学版, 2024, 58 (12): 2540- 2546 ZHOU Yifan, ZHANG Lingwei, ZHOU Zhengdong, et al Classification of group speech imagined EEG signals based on attention mechanism and deep learning[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (12): 2540- 2546
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|