Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (5): 973-981    DOI: 10.3785/j.issn.1008-973X.2025.05.011
    
In-situ curing polydimethylsiloxane 3D printer and process
Lian SU(),Senwen FENG,Yingrui XIE,Congcong LUAN,Xinhua YAO*()
School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2237KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new method based on thermal field-assisted in-situ curing and printing of polydimethylsiloxane (PDMS) was proposed in order to address the defects introduced by specific additives in PDMS 3D printing precursors and the prolonged curing time of PDMS. An in-situ curing 3D printing platform was designed and built, and the optimal parameter combination for the printing build platform surface and the forming surface filament was obtained through orthogonal tests to achieve the printing. Three typical complex structures—an inclined structure, a bionic structure, and a Y-shaped tracheal stent—were printed based on these optimized parameters, achieving in-situ rapid curing and forming of the parts in the printing platform. The applicability of PDMS and other similar thermosetting materials in printing complex structural parts was expanded.



Key wordspolydimethylsiloxane (PDMS)      in-situ curing      3D printing      molding process     
Received: 19 June 2024      Published: 25 April 2025
CLC:  TH 122  
Fund:  国家自然科学基金资助项目(52175278);浙江省自然科学基金资助项目(LGF21H010006).
Corresponding Authors: Xinhua YAO     E-mail: sulian@zju.edu.cn;yaoxinhuame@zju.edu.cn
Cite this article:

Lian SU,Senwen FENG,Yingrui XIE,Congcong LUAN,Xinhua YAO. In-situ curing polydimethylsiloxane 3D printer and process. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 973-981.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.05.011     OR     https://www.zjujournals.com/eng/Y2025/V59/I5/973


聚二甲基硅氧烷原位固化3D打印装置及工艺

针对在聚二甲基硅氧烷(PDMS) 3D打印的前驱体中加入的特定添加剂的缺陷以及PDMS固化时间长的问题,提出基于热场辅助的PDMS原位固化打印新方法,设计搭建原位固化3D打印平台. 通过正交试验获取打印成型平台面与成型面丝材的最优工艺参数组合,基于最优工艺参数组合打印了倾斜结构、仿生结构及Y型气管支架3种典型复杂结构,实现了在打印平台内PDMS制件的原位快速固化成型. 该方法拓展了PDMS及同类热固性材料在复杂结构件打印中的适用性.


关键词: 聚二甲基硅氧烷(PDMS),  原位固化,  3D打印,  成型工艺 
Fig.1 PDMS in-situ curing 3D printing platform
Fig.2 Ink cooling module cooling frame
Fig.3 Thermal simulation result of insulation layer of in-situ curing printing equipment
Fig.4 Architecture diagram of electrical drive control system
性质参数性质参数
组成双组分t2/h48
颜色无色t3/min35
$\lambda $/(W·m?1·K?1)0.27t4/min20
d1.03t5/min10
t1/h1.5Rm/MPa6.7
Tab.1 Basic information of Sylgard 184
水平试验因素
打印温度A/℃喷嘴气压
B/ kPa
打印速度
C/(mm·min?1)
打印层高
D/mm
118050500.2
22001001000.3
32201501500.4
42402002000.5
52602502500.6
Tab.2 Orthogonal experimental factor level table
Fig.5 Appearance of platform surface and molding surface of filament forming platform
试验号试验因素
打印温度
A/℃
喷嘴气压
B/kPa
打印速度
C/(mm·min?1)
打印层高
D/mm
11(180)1(50)1(50)1(0.2)
21(180)2(100)3(150)4(0.5)
31(180)3(150)5(250)2(0.3)
41(180)4(200)2(100)5(0.6)
51(180)5(250)4(200)3(0.4)
62(200)1(50)5(250)4(0.5)
72(200)2(100)2(100)2(0.3)
82(200)3(150)4(200)5(0.6)
92(200)4(200)1(50)3(0.4)
102(200)5(250)3(150)1(0.2)
113(220)1(50)4(200)2(0.3)
123(220)2(100)1(50)5(0.6)
133(220)3(150)3(150)3(0.4)
143(220)4(200)5(250)1(0.2)
153(220)5(250)2(100)4(0.5)
164(240)1(50)3(150)5(0.6)
174(240)2(100)5(250)3(0.4)
184(240)3(150)2(100)1(0.2)
194(240)4(200)4(200)4(0.5)
204(240)5(250)1(50)2(0.3)
215(260)1(50)2(100)3(0.4)
225(260)2(100)4(200)1(0.2)
235(260)3(150)1(50)4(0.5)
245(260)4(200)3(150)2(0.3)
255(260)5(250)5(250)5(0.6)
Tab.3 Orthogonal experiment table for process parameter optimization
Fig.6 Printing model of molding platform surface and molding surface
试验因素T1T2T3T4T5
打印温度A1722.151776.171809.352257.481976.60
喷嘴气压B1205.281549.542054.482167.692453.12
打印速度C3258.552041.071461.581099.121212.26
打印层高D1623.942012.341852.691974.691966.45
Tab.4 Average and range of filament height in printing experiment on forming platform surface μm
试验因素$ {{\bar{H}_{\mathrm{f1}}}} $$ {{\bar{H}_{\mathrm{f2}}}} $$ {{\bar{H}_{\mathrm{f3}}}} $$ {{\bar{H}_{\mathrm{f4}}}} $$ {{\bar{H}_{\mathrm{f5}}}} $$ {R}_{{{H_{\mathrm{f}}}}} $
打印温度A344.430355.234361.870451.496395.320107.066
喷嘴气压B241.056309.908410.896433.538490.624249.568
打印速度C651.710408.214292.316219.824242.452431.886
打印层高D324.788402.468370.538394.938393.29077.6800
Tab.4 
Fig.7 Line chart of range analysis of filament height in printing experiment on forming platform surface
试验因素T1T2T3T4T5
打印温度A5688.775653.565728.085379.264972.49
喷嘴气压B3591.974870.905672.786413.766665.02
打印速度C6911.826215.485393.433514.454155.25
打印层高D5827.135389.145425.975362.335209.86
Tab.5 Average and range of filament width in printing experiment on forming platform surface μm
试验因素$ {{\bar{W}_{\mathrm{f1}}}} $$ {{\bar{W}_{\mathrm{f2}}}} $$ {{\bar{W}_{\mathrm{f3}}}} $$ {{\bar{W}_{\mathrm{f4}}}} $$ {{\bar{W}_{\mathrm{f5}}}} $$ {R}_{{{W_{\mathrm{f}}}}} $
打印温度A1137.751130.711145.621075.85994.498151.118
喷嘴气压B718.394974.1801134.561282.751333.00614.610
打印速度C1382.361243.101078.69702.890831.050679.474
打印层高D1165.431077.831085.191072.471041.97123.454
Tab.5 
Fig.8 Line chart of range analysis of filament width in printing experiment on forming platform surface
试验因素T1T2T3T4T5
打印温度A1825.601842.871865.622136.591994.33
喷嘴气压B1329.881583.532035.742266.902514.84
打印速度C2994.992066.991722.261149.201402.34
打印层高D1849.582020.031868.372076.581916.32
Tab.6 Average and range of filament height in printing experiment on forming surface μm
试验因素$ {{\bar{H}_{\mathrm{s1}}}} $$ {{\bar{H}_{\mathrm{s2}}}} $$ {{\bar{H}_{\mathrm{s3}}}} $$ {{\bar{H}_{\mathrm{s4}}}} $$ {{\bar{H}_{\mathrm{s5}}}} $$ {R}_{{{H}}_{\mathrm{s}}} $
打印温度A365.121368.574373.124427.317398.86662.1966
喷嘴气压B265.976316.706407.148453.379502.967236.991
打印速度C598.998413.397344.452229.840280.468369.158
打印层高D369.916404.005373.674415.317383.26545.4006
Tab.6 
Fig.9 Line chart of range analysis of filament height in printing experiment on forming surface
试验因素T1T2T3T4T5
打印温度A5186.445490.325516.995342.224546.84
喷嘴气压B3840.884380.985187.585919.576444.41
打印速度C7704.895476.914812.743204.733673.40
打印层高D5216.435463.924915.235271.654906.18
Tab.7 Average and range of filament width in printing experiment on forming surface μm
试验因素$ {{\bar{W}_{\mathrm{s1}}}} $$ {{\bar{W}_{\mathrm{s2}}}} $$ {{\bar{W}_{\mathrm{s3}}}} $$ {{\bar{W}_{\mathrm{s4}}}} $$ {{\bar{W}_{\mathrm{s5}}}} $$ {R}_{{{W}}_{\mathrm{s}}} $
打印温度A1037.291098.061103.401068.44909.368194.031
喷嘴气压B768.176876.1961037.511183.911288.88520.705
打印速度C1540.981095.38962.548640.946734.680900.032
打印层高D1043.291092.78983.0471054.33981.235111.549
Tab.7 
Fig.10 Line chart of range analysis of filament width in printing experiment on forming surface
Fig.11 Appearance of PDMS in-situ curing tilted structure printing
Fig.12 Appearance of PDMS in-situ curing biomimetic structure printing
Fig.13 Appearance of PDMS in-situ curing Y-shaped tracheal stent
[1]   MIRANDA I, SOUZA A, SOUSA P, et al Properties and applications of PDMS for biomedical engineering: a review[J]. Journal of Functional Biomaterials, 2021, 13 (1): 2
doi: 10.3390/jfb13010002
[2]   LARMAGNAC A, EGGENBERGER S, JANOSSY H, et al Stretchable electronics based on Ag-PDMS composites[J]. Scientific Reports, 2014, 4 (1): 7254
doi: 10.1038/srep07254
[3]   ARIATI R, SALES F, SOUZA A, et al Polydimethylsiloxane composites characterization and its applications: a review[J]. Polymers, 2021, 13 (23): 4258
doi: 10.3390/polym13234258
[4]   PHAN H P, ZHONG Y, NGUYEN T K, et al Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics[J]. ACS Nano, 2019, 13 (10): 11572- 11581
doi: 10.1021/acsnano.9b05168
[5]   YADHURAJ S R, GANDLA S B, OMPRAKASH S S, et al Design and development of micro-channel using PDMS for biomedical applications[J]. Materials Today: Proceedings, 2018, 5 (10): 21392- 21397
doi: 10.1016/j.matpr.2018.06.545
[6]   POTRICH C, LUNELLI L, COCUZZA M, et al Simple PDMS microdevice for biomedical applications[J]. Talanta, 2019, 19: 44- 50
[7]   WANG X, YANG B, TAN D, et al Bioinspired footed soft robot with unidirectional all-terrain mobility[J]. Materials Today, 2020, 35: 42- 49
doi: 10.1016/j.mattod.2019.12.028
[8]   REHMAN T, NAFEA M, FAUDZI A A, et al PDMS-based dual-channel pneumatic micro-actuator[J]. Smart Materials and Structures, 2019, 28 (11): 115044
doi: 10.1088/1361-665X/ab4ac1
[9]   UNKOVSKIY A, SPINTZYK S, BROM J, et al Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow[J]. The Journal of prosthetic dentistry, 2018, 120 (2): 303- 308
doi: 10.1016/j.prosdent.2017.11.007
[10]   LIU J, YE L, SUN Y, et al Elastic superhydrophobic and photocatalytic active films used as blood repellent dressing[J]. Advanced Materials, 2020, 32 (11): 1908008
doi: 10.1002/adma.201908008
[11]   WANG Z, GAO W, ZHANG Q, et al 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors[J]. ACS Applied Materials and Interfaces, 2018, 11 (1): 1344- 1352
[12]   ABSHIRINI M, CHARARA M, LIU Y, et al 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites[J]. Advanced Engineering Materials, 2018, 20 (10): 1800425
doi: 10.1002/adem.201800425
[13]   SHI G, LOWE S E, TEO A J T, et al A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors[J]. Applied Materials Today, 2019, 16: 482- 492
doi: 10.1016/j.apmt.2019.06.016
[1] Yong-jian BAI,Yun CHEN,Si ZHANG,Kang CHEN,Shi-jie SU. Orthogonal experiment of fused deposition molding 3D printing drawing defects[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2093-2103.
[2] Bo-jun TAN,Bin CHEN,Ya-jing LIU,Wei WANG,Zi-sen LI,Ying-lei WANG,Chuan XIAO. Photocurable 3D printing molding of propellants and explosives[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1594-1606.
[3] Da-peng BAI,Bin ZHANG,Hao-cen HONG,Yang LI,Qing-hua JI,Hua-yong YANG. Biological 3D printer and topography detection of printing model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 289-298.
[4] Xiao-yan SUN,Gui TANG,Hai-long WANG,Qun WANG,Zhi-cheng ZHANG. Effect of 3D printing path on mechanical properties of arch concrete bridge[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2085-2091.
[5] Yang GAO,Cheng-gang FANG,Xian-hui JIANG. Analysis of slurry flow in cement 3D printing nozzle[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 420-426.
[6] SHAO Hui-feng, HE Yong, FU Jian-zhong. Research advance of degradable artificial bone with additive manufacturing: customization from geometric shape to property[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1035-1057.
[7] LUAN Cong-cong, YAO Xin-hua, LIU Cheng-zhe, FU Jian-zhong. Carbon fiber-thermoplastic composite 3D printing technology and its self-monitoring[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1808-1814.