1. School of Highway, Chang’an University, Xi’an 710064, China 2. China Electric Construction Group Northwest Survey and Design Institute Company, Xi’an 710064, China
Centrifugal model tests were used to analyze the effects of cave height changes when the foundation slope is certain under the vertical load at the pile top on the load-settlement curve of the pile foundation, the ultimate bearing capacity of the pile foundation, the pile axial force and the pile side resistance in order to analyze the vertical bearing characteristics of bridge pile foundations crossing the karst cave in the steep slope area. The key parameters affecting the vertical bearing characteristics of the pile foundation were given. Results show that the vertical ultimate bearing capacity of pile foundation decreases with the increase of karst cave height, and the decrease of ultimate bearing capacity increases with the increase of karst cave height under a certain pile length and total depth of the pile foundation into the rock. The decrease of ultimate bearing capacity is not obvious when the karst cave height is less than 1.2 times the pile diameter. The decrease of ultimate bearing capacity increases significantly when the karst cave height is larger than 2.4 times the pile diameter. The decay rate of pile axial force is slower in the pulverised clay layer, faster in the bearing stratum, and does not decay in the range of the karst cave. The decay rate of axial force in the range of the bearing stratum increases significantly after the karst cave height is larger than 2.4 times the pile diameter. The pile side resistance in the holding layer is significantly larger than that in the upper rock and soil layers, and zero in the karst cave. The proportion of pile side resistance in the vertical ultimate bearing capacity of pile foundation gradually decreases as the karst cave height increases. The pile side resistance is reduced by 65.5% when the cave height is larger than 2.4 times the pile diameter, and the pile foundation is gradually transformed from a friction pile to an end-bearing pile.
Yujie LI,Zhongju FENG,Jingbin HE,Cong ZHANG,Siqi WANG. Centrifugal test on vertical load bearing characteristic of pile foundation crossing karst cave in steep sloping area. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2384-2392.
Fig.2Location relationship of steep slope - pile -karst cave
Fig.3TLJ-3 centrifugal model machine
物理量
量纲
原型
离心模型
尺寸l
L
1
1/n
水质量分数w
—
1
1
密度ρ
ML?3
1
1
应变ε
—
1
1
应力σ
ML?1T?2
1
1
质量m
M
1
1/n3
力F
MLT?2
1
1/n2
土压力p
—
1
1/n
重度γ
—
1
n
加速度a
LT?2
1
n
时间t
T
1
1/n2
角度α
—
1
1
变形u
L
1
1/n
Tab.1Similarity relationship of physical quantity in centrifugal model test
Fig.4Pile model and karst cave model of centrifugal model test
类型
A/m2
E/GPa
EA/GN
误差/%
原型桩
3.14
30.00
94.20
1.2%
模型桩
207.24×10?6
46.00
95.33
Tab.2Compressive stiffness of model pile and prototype pile
类别
ww/%
γ/(kN·m?3)
E/MPa
φ/(°)
c/kPa
粉质黏土
30
18
28
22
28
中风化灰岩
1.3
25
6000
—
—
Tab.3Foundation soil parameter of model
类别
ww /%
γ/(kN·m?3)
E//MPa
φ/(°)
c/kPa
粉质黏土
30
19.5
29.2
19.8
27.8
中风化灰岩
1.5
27
6000
—
—
Tab.4Foundation soil parameter of prototype
l/mm
α/(°)
L/mm
H/mm
200
45
60 (2.4D)
无溶洞
200
45
60 (2.4D)
30 (1.2D)
200
45
60 (2.4D)
60 (2.4D)
200
45
60 (2.4D)
90 (3.6D)
200
45
60 (2.4D)
120 (4.8D)
Tab.5Condition setting of centrifugal model test
Fig.5Measuring device of pile top vertical displacement
Fig.6Schematic diagram of pile measurement point layout
Fig.7P-S curve of pile foundation under different karst cave height
Fig.8Vertical ultimate bearing capacity of pile foundation under different karst cave height
Fig.9Axial force distribution of pile at different cave height
Fig.10Effect of cave height on pile axial force distribution
Fig.11Distribution of pile lateral resistance at different cave height
Fig.12Effect of cave height on pile lateral resistance distribution
Fig.13Effect of cave height on pile foundation sub-load capacity
[1]
冯忠居. 特殊地区基础工程[M]. 北京: 人民交通出版社, 2008.
[2]
冯忠居, 王航, 魏进, 等 黄土冲沟斜坡桥梁桩基竖向承载特性模型试验研究[J]. 岩土工程学报, 2015, 37 (12): 2308- 2314 FENG Zhongju, WANG Hang, WEI Jin, et al Experimental study on the vertical bearing characteristics of bridge pile foundations on loess trench slopes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (12): 2308- 2314
doi: 10.11779/CJGE201512022
[3]
GU Z F, LIU Q, LU Y R, et al Analysis and prevention of sinkhole collapses during the reconstruction and extension of Guang-Qing freeway, China[J]. Environmental Earth Sciences, 2016, 75 (9): 788
doi: 10.1007/s12665-016-5625-2
[4]
QU L M, DING X M, KOUROUSSIS G, et al Dynamic interaction of soil and end-bearing piles in sloping ground: numerical simulation and analytical solution[J]. Computers and Geotechnics, 2021, 134 (6): 103917
[5]
彭文哲. 基于应变楔理论的陡坡段桥梁桩基设计计算方法研究[D]. 长沙: 湖南大学, 2020. PENG Wenzhe. Research on the design and calculation method of pile foundation for bridge in steep slope section based on strain wedge theory [D]. Changsha: Hunan University, 2020.
[6]
尹平保, 聂道流, 杨朝晖, 等 斜坡基桩p-y曲线及水平承载计算方法研究[J]. 岩石力学与工程学报, 2018, 37 (4): 996- 1003 YIN Pingbao, NIE Daoliu, YANG Zhaohui, et al Study on p-y curve and horizontal bearing calculation method for slope foundation piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (4): 996- 1003
[7]
CHEN H Y, FENG Z J, LI T, et al Study on the vertical bearing performance of pile across cave and sensitivity of three parameters[J]. Scientific Reports, 2021, 11 (1): 17342
doi: 10.1038/s41598-021-96883-7
[8]
冯忠居, 武敏, 何静斌, 等 陡坡-岩溶耦合作用下公路桥梁桩基极限承载力的计算[J]. 公路, 2021, 66 (1): 115- 121 FENG Zhongju, WU Min, HE Jingbin, et al Calculation of ultimate bearing capacity of pile foundations of highway bridges under coupled steep slope-karst action[J]. Highway, 2021, 66 (1): 115- 121
[9]
冯忠居, 周桂梅, 付长凯, 等 堆载滑动对陡坡柱式桥墩与桩基的力学与变形特性分析[J]. 公路, 2016, 61 (3): 69- 76 FENG Zhongju, ZHOU Guimei, FU Changkai, et al Analysis of mechanical and deformation characteristics of pile sliding on steeply sloped column bridge piers and pile foundations[J]. Highway, 2016, 61 (3): 69- 76
[10]
冯忠居, 陈慧芸, 白少奋, 等 公路桥梁桩基穿越超大型溶洞的荷载传递机制试验研究[J]. 岩石力学与工程学报, 2023, 42 (Suppl.1): 3700- 3711 FENG Zhongju, CHEN Huiyun, BAI Shaofen, et al Experimental study on the load transfer mechanism of highway bridge pile foundation through mega cavern[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (Suppl.1): 3700- 3711
[11]
陈慧芸, 冯忠居, 白少奋, 等 桥梁桩基穿越溶洞的荷载传递机制试验研究[J]. 岩土力学, 2023, 44 (5): 1405- 1415 CHEN Huiyun, FENG Zhongju, BAI Shaofen, et al Experimental study on the load transfer mechanism of bridge pile foundation through caves[J]. Rock and Soil Mechanics, 2023, 44 (5): 1405- 1415
[12]
陈慧芸, 冯忠居, 蔡杰, 等 串珠状溶洞影响下桩基竖向承载特性离心试验[J]. 哈尔滨工业大学学报, 2023, 55 (6): 83- 92 CHEN Huiyun, FENG Zhongju, CAI Jie, et al Centrifugal tests on vertical bearing characteristics of pile foundations under the influence of bead-like cavities[J]. Journal of Harbin Institute of Technology, 2023, 55 (6): 83- 92
doi: 10.11918/202206118
[13]
董芸秀, 冯忠居, 郝宇萌, 等 岩溶区桥梁桩基承载力试验与合理嵌岩深度[J]. 交通运输工程学报, 2018, 18 (6): 27- 36 DONG Yunxiu, FENG Zhongju, HAO Yumeng, et al Bearing capacity test of bridge pile foundations in karst areas and reasonable rock embedded depth[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (6): 27- 36
doi: 10.3969/j.issn.1671-1637.2018.06.004
[14]
黄明, 付俊杰, 陈福全, 等 桩端荷载与地震耦合作用下溶洞顶板的破坏特征及安全厚度计算[J]. 岩土力学, 2017, 38 (11): 3154- 3162 HUANG Ming, FU Junjie, CHEN Fuquan, et al Damage characteristics and safe thickness calculation of cavern roof slab under coupled pile-end load and earthquake[J]. Rock and Soil Mechanics, 2017, 38 (11): 3154- 3162
[15]
赵明华, 徐卓君, 肖晓, 等 基于平面应变模型的岩溶区嵌岩桩桩端极限承载力计算[J]. 土木工程学报, 2018, 51 (2): 88- 94 ZHAO Minghua, XU Zhuojun, XIAO Xiao, et al Calculation of ultimate bearing capacity at the pile end of embedded piles in karst areas based on plane strain model[J]. Chinese Civil Engineering Journal, 2018, 51 (2): 88- 94
[16]
赵明华, 肖晓, 徐卓君, 等 基于Griffith强度准则的岩溶区桩基溶洞稳定性分析[J]. 中国公路学报, 2018, 31 (1): 31- 37 ZHAO Minghua, XIAO Xiao, XU Zhuojun, et al Stability analysis of pile foundation cavities in karst areas based on Griffith strength criterion[J]. China Journal of Highway and Transport, 2018, 31 (1): 31- 37
doi: 10.3969/j.issn.1001-7372.2018.01.004
[17]
柏华军 考虑溶洞顶板自重时桩端持力岩层安全厚度计算方法[J]. 岩土力学, 2016, 37 (10): 2945- 2952 BAI Huajun Calculation method of safe thickness of rock layer supported by pile end when considering the self-weight of cavern roof[J]. Rock and Soil Mechanics, 2016, 37 (10): 2945- 2952
[18]
林天爵, 杨果林, 柳卓, 等 考虑竖向摩阻作用的陡坡段桥梁桩基侧向受力分析[J]. 东南大学学报, 2021, 51 (6): 986- 995 LIN Tianjue, YANG Guolin, LIU Zhuo, et al Lateral force analysis of bridge pile foundations on steep slope sections considering vertical friction[J]. Journal of Southeast University, 2021, 51 (6): 986- 995
[19]
张永杰, 夏旖琪, 冯夏庭, 等 陡坡段双桩-柱基础简化计算方法及影响因素分析[J]. 岩土力学, 2017, 38 (6): 1705- 1715 ZHANG Yongjie, XIA Yiqi, FENG Xiating, et al Simplified calculation method and analysis of influencing factors for double pile-column foundation in steep slope section[J]. Rock and Soil Mechanics, 2017, 38 (6): 1705- 1715
[20]
ZHANG Y F, LIU H Y, LI J, et al Research on the influence mechanism of the high-steep slope on the deformation characteristics of bridge substructure[J]. Advances in Civil Engineering, 2021, (3): 9037680
[21]
张智浩, 张慧乐, 马凛, 等 岩溶区嵌岩桩的破坏模式与工程设计探讨[J]. 岩石力学与工程学报, 2013, 32 (Suppl.2): 4130- 4138 ZHANG Zhihao, ZHANG Huile, MA Lin, et al Damage modes and engineering design of rock embedded piles in karst areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (Suppl.2): 4130- 4138
[22]
袁维, 刘尚各, 聂庆科, 等 基于冲切破坏模式的嵌岩桩桩端溶洞顶板临界厚度确定方法研究[J]. 岩土力学, 2019, 40 (7): 2789- 2798 YUAN Wei, LIU Shangge, NIE Qingke, et al Study on the critical thickness determination method of the cavity top plate at the pile end of embedded rock pile based on punching and cutting damage mode[J]. Rock and Soil Mechanics, 2019, 40 (7): 2789- 2798
[23]
WANG P, DING H, ZHANG P Influence of karst caves at pile side on the bearing capacity of super-long pile foundation[J]. Mathematical Problems in Engineering, 2020, (2): 4895735
[24]
张永杰, 邓俊强, 杨兴山, 等 考虑溶洞空间形态的岩溶桩基稳定性分析方法[J]. 中国公路学报, 2019, 32 (1): 37- 45 ZHANG Yongjie, DENG Junqiang, YANG Xingshan, et al Stability analysis method of karst pile foundation considering spatial morphology of caves[J]. China Journal of Highway and Transport, 2019, 32 (1): 37- 45
[25]
周德泉, 张杨龙, 曹勇, 等 溶洞高度影响嵌岩桩轴力传递及桩侧超载响应试验[J]. 湖南大学学报: 自然科学版, 2022, 49 (7): 83- 93 ZHOU Dequan, ZHANG Yanglong, CAO Yong, et al Experiments on the effect of cavity height on the axial force transfer and pile side overload response of embedded piles[J]. Journal of Hunan University: Natural Science Edition, 2022, 49 (7): 83- 93
doi: 10.55463/issn.1674-2974.49.7.9
[26]
杨果林, 邓志宏, 罗桂军, 等 横坡段桩柱式桥梁双桩基础结构的力学行为研究[J]. 铁道科学与工程学报, 2023, 20 (3): 920- 930 YANG Guolin, DENG Zhihong, LUO Guijun, et al Study on the mechanical behavior of double pile foundation structure of pile-column bridge with cross slope section[J]. Journal of Railway Science and Engineering, 2023, 20 (3): 920- 930
[27]
蒋武军, 鄢定媛, 王明明, 等 特大型溶洞回填体基桩荷载-沉降规律与计算研究[J]. 岩土工程学报, 2017, 39 (Suppl.2): 67- 70 JIANG Wujun, YAN Dingyuan, WANG Mingming, et al Study on the load-settlement law and calculation of foundation piles in backfilled bodies of very large caves[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (Suppl.2): 67- 70
doi: 10.11779/CJGE2017S2017