Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (5): 900-907    DOI: 10.3785/j.issn.1008-973X.2024.05.003
    
Heterogeneous graph convolutional neural network for argument pair extraction
Yidan LIU(),Xiaofei ZHU*(),Yabo YIN
College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
Download: HTML     PDF(850KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An argument pair extraction model based on heterogeneous graph convolutional neural network was proposed aiming at the issue of difficulty in capturing interactive information between review passage and rebuttal passage and neglecting to model relative positional information between sentences. Heterogeneous graphs were constructed within the review passage and rebuttal passage. Two types of nodes and four types of edges were defined. The relational graph convolutional neural network was utilized to update the representations of nodes within the graph. A position-aware sentence pair generator was introduced, and rotary position embedding was employed to model the relative positional information between sentences in review passage and rebuttal passage. Experimental evaluations on the RR-passage and RR-submission-v2 datasets demonstrate that the proposed model outperforms all baseline models. The performance of the argument pair extraction model can be enhanced by constructing heterogeneous graphs to distinguish between different types of nodes and edges and designing a position-aware sentence pair generator.



Key wordsargument mining      argument pair extraction      graph neural network      rotary position embedding      natural language processing     
Received: 03 July 2023      Published: 26 April 2024
CLC:  TP 393  
Fund:  国家自然科学基金资助项目(62141201);重庆市自然科学基金资助项目 (CSTB2022NSCQ-MSX1672);重庆市教育委员会科学技术研究计划资助项目(KJZD-M202201102);重庆理工大学研究生教育高质量发展行动计划资助项目(gzlcx20233230).
Corresponding Authors: Xiaofei ZHU     E-mail: lyd@stu.cqut.edu.cn;zxf@cqut.edu.cn
Cite this article:

Yidan LIU,Xiaofei ZHU,Yabo YIN. Heterogeneous graph convolutional neural network for argument pair extraction. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 900-907.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.05.003     OR     https://www.zjujournals.com/eng/Y2024/V58/I5/900


基于异质图卷积神经网络的论点对抽取模型

针对论点对抽取任务中存在着评审段和反驳段之间交互信息难以捕获以及忽略了对句子间的相对位置信息进行建模问题, 提出基于异质图卷积神经网络的论点对抽取模型. 该模型在评审段和反驳段中构建异质图,定义2种不同类型的节点及4种不同类型的边,通过关系图卷积神经网络来更新图中节点的表示. 提出位置感知的句子对生成器,利用旋转位置编码来建模评审段和反驳段句子间的相对位置信息. 在RR-passage和RR-submission-v2数据集上进行实验,实验结果表明,提出模型的性能均优于所有的基线模型. 这表明通过构建异质图区分不同的节点类型和边的类型,设计位置感知的句子对生成器,能够提升论点对抽取模型的效果.


关键词: 论辩挖掘,  论点对抽取,  图神经网络,  旋转位置编码,  自然语言处理 
Fig.1 Model architecture of HGCN-APE
Fig.2 Heterogeneous graph construction of HGCN-APE
Fig.3 Effect of HGCN-APE hyper-parameter$ \lambda $
评审反驳评审反驳
NvbNtrNdevNtNfNaNsNfNaNs
4764381147647799 80023 20058 50094 90017 70067 500
Tab.1 Statistics of argument pair extraction dataset
数据集模型论点预测句子对预测论点对预测
P/%R/%F1/%P/%R/%F1/%P/%R/%F1/%
RR-submission-v2MT-H-LSTM-CRF70.7469.4670.0952.0546.7449.2527.2426.0026.61
MLMC69.5373.2771.3560.0146.8252.6037.1529.3832.81
MGF70.4071.8771.1334.2334.5734.40
MRC-APE-Bert73.3668.3570.7742.2634.0637.72
HGCN-APE71.8671.8071.8366.1259.4062.5842.7036.0539.09
RR-passageMT-H-LSTM-CRF71.8571.0171.4354.2843.2448.1330.0829.5529.81
MLMC66.7972.1769.3762.4942.3350.5340.2729.5334.07
MGF73.6270.8872.2238.0335.6836.82
MRC-APE-Bert66.8169.8468.2934.7035.5335.51
HGCN-APE72.5071.6172.0567.6859.2563.1845.7638.3241.71
Tab.2 Comparison of performance of HGCN-APE on RR-passage and RR-submission-v2 dataset
模型论点对预测
P/%R/%F1/%
HGCN-APE45.7638.3241.71
w/o v2v44.3638.2641.09
w/o b2b44.6937.6340.86
w/o v2b41.5835.6338.38
w/o b2v42.6832.8437.12
w/o pos44.5637.6840.83
Tab.3 Ablation study of HGCN-APE on RR-passage dataset
数据集LP/%R/%F1/%
RR-passage133.4725.9429.23
244.0335.1139.02
345.7638.3241.71
443.7739.7441.66
544.4938.1141.05
RR-submission-v2133.4725.9429.23
240.4732.5036.05
342.7036.0539.09
442.0235.6838.59
540.9834.1537.25
Tab.4 Effect of HGCN-APE hyper-parameter $L$
Fig.4 Comparison of loss and performance of HGCN-APE on RR-passage and RR-submission-v2 dataset
样本真实评审段论点预测评审段论点真实反驳段论点预测反驳段论点真实论点对预测论点对
18-98-91-71-7(8-9)-(1-7)(6-7)-(1-7)
10-1510-158-138-13(10-15)-(8-13)(10-15)-(8-13)
6-7
210-1110-111-81-8(10-11)-(1-8)(10-11)-(1-8)
12-1212-129-119-11(12-12)-(9-11)(12-12)-(9-11)
16-1717-17(16-17)-(1-8)(17-17)-(1-8)
36-106-101-111-11(6-10)-(1-11)(6-10)-(1-11)
12-1312-1314-1814-18(12-13)-(14-18)(12-13)-(14-18)
14-1514-1521-2421-24(14-15)-(21-24)(14-15)-(21-24)
Tab.5 Case study of HGCN-APE
[1]   EGER S, DAXENBERGER J, GUREVYCH I. Neural end-to-end learning for computational argumentation mining [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017: 11-22.
[2]   KURIBAYASHI T, OUCHI H, INOUE N, et al. An empirical study of span representations in argumentation structure parsing [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence: ACL, 2019: 4691-4698.
[3]   MORIO G, FUJITA K. End-to-end argument mining for discussion threads based on parallel constrained pointer architecture [C]// Proceedings of the 5th Workshop on Argument Mining. Brussels: ACL, 2018: 11-21.
[4]   CHAKRABARTY T, HIDEY C, MURESAN S, et al. AMPERSAND: argument mining for PERSuAsive oNline discussions [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: ACL, 2019: 2933–2943.
[5]   魏忠钰 计算论辩技术: 迈向智能人类辩手之路[J]. 世界科学, 2023, (5): 46- 49
WEI Zhongyu Computational argumentation techniques: toward the path of intelligent human debaters[J]. World Science, 2023, (5): 46- 49
doi: 10.3969/j.issn.1000-0968.2023.05.013
[6]   CHENG L, BING L, YU Q, et al. APE: argument pair extraction from peer review and rebuttal via multi-task learning [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: ACL, 2020: 7000-7011.
[7]   CHENG L, WU T, BING L, et al. Argument pair extraction via attention-guided multi-layer multi-cross encoding [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. [S. l. ]: ACL, 2021: 6341-6353.
[8]   BAO J, LIANG B, SUN J, et al. Argument pair extraction with mutual guidance and inter-sentence relation graph [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Punta Cana: ACL, 2021: 3923-3934.
[9]   BAO J, SUN J, ZHU Q, et al. Have my arguments been replied to? argument pair extraction as machine reading comprehension [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin: ACL, 2022: 29-35.
[10]   WALKER V, FOERSTER D, PONCE J M, et al. Evidence types, credibility factors, and patterns or soft rules for weighing conflicting evidence: argument mining in the context of legal rules governing evidence assessment [C]// Proceedings of the 5th Workshop on Argument Mining. Brussels: ACL, 2018: 68-78.
[11]   LE D T, NGUYEN C T, NGUYEN K A. Dave the debater: a retrieval-based and generative argumentative dialogue agent [C]// Proceedings of the 5th Workshop on Argument Mining. Brussels: ACL, 2018: 121-130.
[12]   ZHANG F, LITMAN D. Using context to predict the purpose of argumentative writing revisions [C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego: ACL, 2016: 1424-1430.
[13]   JI L, WEI Z, LI J, et al. Discrete argument representation learning for interactive argument pair identification [C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. [S. l. ]: ACL, 2016: 5467-5478.
[14]   YUAN J, WEI Z, ZHAO D, et al. Leveraging argumentation knowledge graph for interactive argument pair identification [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. [S. l. ]: ACL, 2021: 2310-2319.
[15]   SHI L, GIUNCHIGLIA F, SONG R, et al. A simple contrastive learning framework for interactive argument pair identification via argument-context extraction [C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Abu Dhabi: ACL, 2022: 10027-10039.
[16]   KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017-02-22). https://arxiv.org/abs/1609.02907.
[17]   VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2017-10-30)[2023-06-20]. https://arxiv.org/abs/1710.10903.
[18]   SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// The Semantic Web: 15th International Conference, Extended Semantic Web Conference. Heraklion: Springer, 2018: 593-607.
[19]   WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: ACL, 2020: 3229-3238.
[20]   HU L, YANG T, SHI C, et al. Heterogeneous graph attention networks for semi-supervised short text classification [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: ACL, 2019: 4821-4830.
[21]   VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st lnternational Conference on Neural lnformation Processing Systems. California: Curran Associates Inc., 2017: 6000-6010.
[22]   DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics . Minneapolis: ACL, 2019: 4171-4186.
[23]   SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958
[24]   HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
[25]   SU J, LU Y, PAN S, et al. Roformer: enhanced transformer with rotary position embedding [EB/OL]. (2021-04-09). https://arxiv.org/abs/2104.09864.
[26]   LAFFERTY J, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data [C]// Proceedings of the 18th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 2001: 282-289.
[27]   BELTAGY I, PETERS M E, COHAN A. Longformer: the long-document transformer [EB/OL]. (2020-05-10). https://arxiv.org/abs/2004.05150.
[1] Xinhua YAO,Tao YU,Senwen FENG,Zijian MA,Congcong LUAN,Hongyao SHEN. Recognition method of parts machining features based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 349-359.
[2] Yan-fen CHENG,Jia-jun WU,Fan HE. Aspect level sentiment analysis based on relation gated graph convolutional network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 437-445.
[3] Qing-song ZHOU,Xiao-dong CAI,Jia-liang LIU. Personalized recommendation algorithm combining social influence and long short-term preference[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 495-502.
[4] Ju-xiang ZENG,Ping-hui WANG,Yi-dong DING,Lin LAN,Lin-xi CAI,Xiao-hong GUAN. Graph neural network based node embedding enhancement model for node classification[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 219-225.
[5] Jing-jing ZHANG,Zhao-gong ZHANG,Xin XU. Graph convolution collaborative filtering model combining graph enhancement and sampling strategies[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 243-251.
[6] Tian-qi ZHOU,Yan YANG,Ji-jie ZHANG,Shao-wei YIN,Zeng-qiang GUO. Graph contrastive learning based on negative-sample-free loss and adaptive augmentation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 259-266.
[7] Jia-wei LU,Duan-ni LI,Ce-ce WANG,Jun XU,Gang XIAO. Multi-behavior aware service recommendation based on hypergraph graph convolution neural network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1977-1986.
[8] Ting WANG,Xiao-fei ZHU,Gu TANG. Knowledge-enhanced graph convolutional neural networks for text classification[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 322-328.
[9] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[10] ZHANG Han, LUO Sen-lin, ZOU Li-li, SHI Xiu-min. Cross-document personal name disambiguation merging sentential semantic analysis[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 717-723.
[11] HAN Lei, LUO Sen-lin, PAN Li-min, WEI Chao. high accuracy Chinese predicate recognition method combining lexical and syntactic feature[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2107-2114.