|
|
Interactive visualization generation method for time series data based on transfer learning |
Zihan ZHOU1( ),Xumeng WANG2,Wei CHEN1,3,*( ) |
1. State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou 310058, China 2. College of Computer Science, Nankai University, Tianjin 300350, China 3. Laboratory of Art and Archaeology Image, Zhejiang University, Ministry of Education, Hangzhou 310058, China |
|
|
Abstract An interactive visualization generation method for time series data based on transfer learning was proposed in order to address the inconsistency in data distribution across time-series data and facilitate the application of pattern analysis to other data. Transfer component analysis was applied to transfer features extracted from each time series data. The user’s analysis on one of the time series data served as labels. The classifier was trained on the source domain and applied to multiple target domains in order to achieve pattern recommendations. Two case studies and expert interviews with real-world weather data and bearing signal data were conducted to verify the effectiveness and practicality of the method by improving the efficiency of temporal data exploration and reducing the impact of inconsistent data distribution.
|
Received: 30 June 2023
Published: 23 January 2024
|
|
Fund: 国家自然科学基金资助项目(62132017); 中央高校基本科研业务费专项资助项目(226-2022-00235) |
Corresponding Authors:
Wei CHEN
E-mail: zhouzihan@zju.edu.cn;chenvis@zju.edu.cn
|
基于迁移学习的交互时序数据可视化生成方法
为了解决时序数据间分布不一致的问题,使模式分析更容易应用于其他数据,提出基于迁移学习的交互式时序数据可视化生成方法, 将迁移成分分析应用于时序数据提取的特征. 将用户在其中一个时序数据上的分析作为标签, 在该源域上训练分类器并应用到多个目标域, 对多个不同目标域的时序数据的模式进行批量推荐. 通过真实的天气数据和轴承信号数据的2个案例分析和专家访谈, 验证了利用该方法能够提高时序数据探索的效率,减少数据分布不一致问题带来的影响, 体现该方法的有效性和实用性.
关键词:
交互式可视化生成,
迁移学习,
时序数据可视分析,
模式推荐
|
|
[1] |
WONGSUPHASAWAT K, GOMEZ J A G, PLAISANT C, et al. LifeFlow: visualizing an overview of event sequences [C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Vancouver: ACM, 2011: 1747-1756.
|
|
|
[2] |
TULI S, CASALE G, JENNINGS N R TranAD: deep transformer networks for anomaly detection in multivariate time series data[J]. Proceedings of Very Large Data Base, 2022, 15 (6): 1201- 1204
|
|
|
[3] |
FANG Y, XU H, JIANG J. A survey of time series data visualization research [C]//Proceedings of IOP Conference Series: Materials Science and Engineering. [S. l.]: IOP, 2020: 022013.
|
|
|
[4] |
WALKER J S, JONES M W, LARAMEE R S, et al TimeClassifier: a visual analytic system for the classification of multi-dimensional time series data[J]. The Visual Computer, 2015, 31 (6-8): 1067- 1078
doi: 10.1007/s00371-015-1112-0
|
|
|
[5] |
HAO M C, MARWAH M, JANETZKO H, et al Visual exploration of frequent patterns in multivariate time series[J]. Information Visualization, 2012, 11 (1): 71- 83
doi: 10.1177/1473871611430769
|
|
|
[6] |
WALKER J, BORGO R, JONES M W TimeNotes: a study on effective chart visualization and interaction techniques for time-series data[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 22 (1): 549- 558
|
|
|
[7] |
TOMINSKI C, SCHUMANN H. Enhanced interactive spiral display [C]//Proceedings of the Annual Swedish Chapter of Eurogaphics Conference. Sweden: Linköping University Electronic Press, 2008: 53-56.
|
|
|
[8] |
SOBRAL T, GALVÃO T, BORGES J Visualization of urban mobility data from intelligent transportation systems[J]. Sensors, 2019, 19 (2): 332
doi: 10.3390/s19020332
|
|
|
[9] |
HAIGH K Z, FOSLIEN W, GURALNIK V. Visual query language: finding patterns in and relationships among time series data [C]//7th Workshop on Mining Scientific and Engineering Datasets. [S. l.]: Citeseer, 2004: 324-332.
|
|
|
[10] |
SADAHIRO Y, KOBAYASHI T Exploratory analysis of time series data: detection of partial similarities, clustering, and visualization[J]. Computers, Environment and Urban Systems, 2014, 45: 24- 33
|
|
|
[11] |
ALI M, JONES M W, XIE X, et al TimeCluster: dimension reduction applied to temporal data for visual analytics[J]. The Visual Computer, 2019, 35 (6-8): 1013- 1026
doi: 10.1007/s00371-019-01673-y
|
|
|
[12] |
GHASSEMPOUR S, GIROSI F, MAEDER A Clustering multivariate time series using hidden Markov models[J]. International Journal of Environmental Research and Public Health, 2014, 11 (3): 2741- 2763
doi: 10.3390/ijerph110302741
|
|
|
[13] |
AGHABOZORGI S, YING WAH T, HERAWAN T, et al A hybrid algorithm for clustering of time series data based on affinity search technique[J]. The Scientific World Journal, 2014, 2014 (1): 562194
|
|
|
[14] |
LI J, ZHOU C Incorporation of human knowledge into data embeddings to improve pattern significance and interpretability[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 29 (1): 723- 733
|
|
|
[15] |
YANG Q F, GAO W Y, HAN G, et al HCDC: a novel hierarchical clustering algorithm based on density-distance cores for data sets with varying density[J]. Information Systems, 2023, 114: 102159
doi: 10.1016/j.is.2022.102159
|
|
|
[16] |
KEOGH E J, PAZZANI M J. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback [C]// Knowledge Discovery and Data Mining. New York: AAAI, 1998: 239-243.
|
|
|
[17] |
FAHAD S, SU F, KHAN S U, et al Implementing a novel deep learning technique for rainfall forecasting via climatic variables: an approach via hierarchical clustering analysis[J]. Science of the Total Environment, 2023, 854: 158760
doi: 10.1016/j.scitotenv.2022.158760
|
|
|
[18] |
RODRIGUES P P, GAMA J, PEDROSO J Hierarchical clustering of time-series data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20 (5): 615- 627
doi: 10.1109/TKDE.2007.190727
|
|
|
[19] |
MA Q, LI S, ZHUANG W, et al Self-supervised time series clustering with model-based dynamics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (9): 3942- 3955
|
|
|
[20] |
DEMPSTER A, PETITJEAN F, WEBB G I ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels[J]. Data Mining and Knowledge Discovery, 2020, 34 (5): 1454- 1495
doi: 10.1007/s10618-020-00701-z
|
|
|
[21] |
YALÇIN M A, ELMQVIST N, BEDERSON B B Keshif: rapid and expressive tabular data exploration for novices[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24 (8): 2339- 2352
|
|
|
[22] |
WONGSUPHASAWAT K, QU Z, MORITZ D, et al. Voyager 2: augmenting visual analysis with partial view specifications [C]//Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver: ACM, 2017: 2648-2659.
|
|
|
[23] |
REN D, LEE B, BREHMER M Charticulator: interactive construction of bespoke chart layouts[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 25 (1): 789- 799
|
|
|
[24] |
PIOCH N J, EVERETT J O. Polestar: collaborative knowledge management and sensemaking tools for intelligence analysts [C]//Proceedings of the 15th ACM International Conference on Information and Knowledge Management. Virginia: ACM, 2006: 513-521.
|
|
|
[25] |
SATYANARAYAN A, HEER J Lyra: an interactive visualization design environment[J]. Computer Graphics Forum, 2014, 33 (3): 351- 360
doi: 10.1111/cgf.12391
|
|
|
[26] |
REN D, HÖLLERER T, YUAN X iVisDesigner: expressive interactive design of information visualizations[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20 (12): 2092- 2101
doi: 10.1109/TVCG.2014.2346291
|
|
|
[27] |
WANG Y, ZHANG H, HUANG H, et al. InfoNice: easy creation of information graphics [C]//Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Montreal: ACM, 2018: 1-12.
|
|
|
[28] |
XIA H, HENRY RICHE N, CHEVALIER F, et al. DataInk: direct and creative data-oriented drawing [C]// Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Montreal: ACM, 2018: 1-13.
|
|
|
[29] |
VARTAK M, RAHMAN S, MADDEN S, et al. SeeDB: efficient data-driven visualization recommendations to support visual analytics [C]//Proceedings of the VLDB Endowment International Conference on Very Large Data Bases. Hawaii: VLDB Endowment, 2015: 2182-2193.
|
|
|
[30] |
WANG Y, SUN Z, ZHANG H, et al DataShot: automatic generation of fact sheets from tabular data[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 26 (1): 895- 905
|
|
|
[31] |
DEMIRALP Ç, HAAS P J, PARTHASARATHY S, et al. Foresight: recommending visual insights [C]// Proceedings of the VLDB Endowment International Conference on Very Large Data Bases. Munich: VLDB Endowment, 2017: 1937-1940.
|
|
|
[32] |
QIAN C, SUN S, CUI W, et al Retrieve-then-adapt: example-based automatic generation for proportion-related infographics[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27 (2): 443- 452
doi: 10.1109/TVCG.2020.3030448
|
|
|
[33] |
SHI D, XU X, SUN F, et al Calliope: automatic visual data story generation from a spreadsheet[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27 (2): 453- 463
doi: 10.1109/TVCG.2020.3030403
|
|
|
[34] |
BORGWARDT K M, GRETTON A, RASCH M J, et al Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22 (14): 49- 57
doi: 10.1093/bioinformatics/btl242
|
|
|
[35] |
PAN S J, TSANG I W, KWOK J T, et al Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2010, 22 (2): 199- 210
|
|
|
[36] |
CARROLL M L, BROWN M E, WOOTEN M R, et al In situ air temperature and humidity measurements over diverse land covers in Greenbelt, Maryland, november 2013–november 2015[J]. Earth System Science Data, 2016, 8 (2): 415- 423
doi: 10.5194/essd-8-415-2016
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|