The mesoscopic multi-velocity component lattice Boltzmann fluid-structure interaction model, combined with the large eddy simulation (LES) method, was proposed in order to investigate the in-flow shock and flow-induced vibration characteristics during static mixing. The aim is to explore the static mixing process, including characteristics such as strong shear, backflow recoil, wall impact, and other factors. Taking static mixer as the research object, the model of static mixing process was established, and the weak coupling solution strategy of flow field and structure field was proposed. The proposed method was used to study the effects of different displacement deformations, different inlet velocities and different static mixer blade angles on the vibration response of the tube wall. Results show that blade action can convert the axial velocity of the fluid into tangential and radial velocity. When the inlet velocity is relatively large, the internal flow field has obvious influence on the vibration frequency and amplitude of the static mixer. Changing the mixer blade angle will affect the shear drainage effect of the flow field, and has significant effects on the longitudinal and axial displacement, mainly in the low frequency band.
Ya-xing YIN,Tong WANG,Cheng-yan WANG,Yan-kang ZHANG,Shi-cheng XU,Da-peng TAN. Mixing process modeling and flow-induced vibration characteristics based on lattice Boltzmann method. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2217-2226.
Fig.2Flowchart of fluid-structure interaction calculation for LBM
Fig.3Diagram of static mixed space structure
名称
参数
数值
静态混合器
L0/mm
550
R/mm
70
h/mm
5
d/mm
10
ρ /(kg·m?3)
7 850
E/GPa
210
μ
0.3
流体参数
ρw /(kg·m?3)
998
μw /(Pa·s)
0.001
Tab.1Physics parameters of static mixer and fluid
Fig.4Hydrodynamic model of fluid structure coupling
网格编号
M
N
Ar/(10?7 m)
1
500 000
102 673
1.18
2
750 000
154 432
1.09
3
1 254 000
174 300
1.04
4
1 788 900
193 246
1.05
5
2 453 800
246 321
1.04
Tab.2Grid independence verification
Fig.5Comparison of wall displacement curve of static mixer
Fig.6Schematic diagram of circumferential monitoring points and deformation of static mixer under internal fluid excitation
Fig.7RMS amplitude of static mixer along x axial direction
Fig.8Displacement response of each monitoring point in circumferential direction
Fig.9Flow field velocity distribution nephogram of different inlet velocity
Fig.10Vibration response curves of static mixer wall under fluid excitation at different flow rates
Fig.11Velocity distribution diagram of mixed elements with different angles
Fig.12Effect of different blades on wall displacement response of mixer
Fig.13Effect of different blades on wall amplitude-frequency response of mixer
[1]
SOMAN S S, MADHURANTHAKAM C Effects of internal geometry modifications on the dispersive and distributive mixing in static mixers[J]. Chemical Engineering and Processing, 2017, 122: 31- 43
doi: 10.1016/j.cep.2017.10.001
[2]
MIRELLA C, GIUSEPPINA M, ALESSANDRO P Computational fluid dynamics modeling of corrugated static mixers for turbulent applications[J]. Industrial and Engineering Chemistry Research, 2012, 51 (49): 15986- 15996
doi: 10.1021/ie300398z
[3]
GHANEM A, LEMENAND T, VALLE D D, et al Static mixers: mechanisms, applications, and characterization methods: a review[J]. Chemical Engineering Research and Design, 2014, 92 (2): 205- 228
doi: 10.1016/j.cherd.2013.07.013
[4]
纪冲, 龙源, 方向, 等 钢质圆柱壳在侧向局部冲击荷载下的变形及失效破坏[J]. 振动与冲击, 2013, 32 (15): 121- 125 JI Chong, LONG Yuan, FANG Xiang, et al Dynamic response and perforation failure of cylindrical shell subjected to lateral local impulsive loading[J]. Journal of Vibration and Shock, 2013, 32 (15): 121- 125
[5]
VALDES J P, KAHOUADII L, MATAR O K. Current advances in liquid-liquid mixing in static mixers: a review. Chemical Engineering Research and Design, 2022, 177: 694-731.
[6]
刘晨, 崔醒, 尹德明, 等 新型静态混合器的数值模拟及优化[J]. 轻金属, 2021, (10): 19- 22 LIU Chen, CUI Xing, YIN De-ming, et al Numerical simulation and optimization of a novel static mixer[J]. Light Metals, 2021, (10): 19- 22
[7]
MURASIEWICZ H, JAWORSKI Z Modelowanie metodami URANS i LES przepływu dwufazowego w mieszalniku statycznym z wkładkami typu Kenics[J]. Inżynieria I Aparatura Chemiczna, 2010, (3): 79- 80
[8]
孟辉波, 蒙彤, 禹言芳, 等 Ross LPD型静态混合器内湍流传热与混合强化特性[J]. 化工学报, 2022, 73 (8): 3541- 3552 MENG Hui-bo, MENG Tong, YU Yan-fang, et al Turbulent heat transfer and mixing enhancement characteristics in Ross LPD Static Mixer[J]. CIESC Journal, 2022, 73 (8): 3541- 3552
[9]
AIDUN C K, CLAUSEN J R Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42 (1): 439- 472
doi: 10.1146/annurev-fluid-121108-145519
[10]
HADDADI M M, HOSSEINI S H, RASHTCHIAN D, et al Comparative analysis of different static mixers performance by CFD technique: an innovative mixer[J]. Chinese Journal of Chemical Engineering, 2020, (3): 672- 684
[11]
MURASIEWICZ H, ZAKRZEWSKA B Large eddy simulation of turbulent flow and heat transfer in a Kenics static mixer[J]. Chemical and Process Engineering, 2019, 40 (1): 87- 99
[12]
孟辉波, 禹言芳, 吴剑华, 等 静态混合器内瞬态壁压波动特性实验研究[J]. 哈尔滨工程大学学报, 2011, 32 (5): 690- 696 MENG Hui-bo, YU Yan-fang, WU Jian-hua, et al Experimental research on the fluctuation characteristics of instantaneous tube-pressure signals in a static mixer[J]. Journal of Harbin Engineering University, 2011, 32 (5): 690- 696
[13]
NIKOLIC M, RAJKOVIC M Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends[J]. Journal of Fluids and Structures, 2005, 22 (2): 173- 195
[14]
LECLAIRE S, VIDAL D, FRADETTE L, et al Validation of the pressure drop-flow rate relationship predicted by lattice Boltzmann simulations for immiscible liquid-liquid flows through SMX static mixers[J]. Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers, 2020, 153: 350- 368
doi: 10.1016/j.cherd.2019.10.035
[15]
权登辉, 杨晓军, 刘龙, 等 Kenics型静态混合器性能优化的数值与应用分析[J]. 化工机械, 2021, 48 (2): 203- 208 QUAN Deng-hui, YANG Xiao-jun, LIU Long, et al Numerical and application analysis of performance optimization of Kenics static mixer[J]. Chemical Engineering and Machinery, 2021, 48 (2): 203- 208
[16]
禹言芳, 陈雅鑫, 孟辉波, 等 Lightnin静态混合器内纳米流体湍流传热特性分析[J]. 化工进展, 2021, 40 (Suppl. 2): 30- 39 YU Yan-fang, CHEN Ya-xin, MENG Hui-bo, et al Analysis of turbulent heat transfer characteristics of nanofluids in the Lightnin static mixer[J]. Chemical Industry and Engineering Progress, 2021, 40 (Suppl. 2): 30- 39
[17]
SUGA K, KUWATA Y, TAKASHIMA K, et al A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows[J]. Computers and Mathematics with Applications, 2015, 69 (6): 518- 529
doi: 10.1016/j.camwa.2015.01.010
[18]
D’HUMIERES B D. Generalized lattice-Boltzmann equations [C]// 18th International Symposium, Rarefied Gas Dynamics. Vancouver: American Institute of Aeronautics and Astronautics, 1994: 450-458.
陈艳燕. 晶格玻尔兹曼方法研究固液界面特征下的血液流[D]. 上海: 中国科学院上海应用物理研究所, 2008. CHEN Yan-yan. Study of blood flow at solid-liquid interface based on lattice Boltzmann method[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2008.
[21]
NEWMARK N M A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division Asce, 1959, 85 (1): 67- 94
doi: 10.1061/JMCEA3.0000081
[22]
YU D Z, MEI R W, LUO L S, et al Viscous flow computations with the method of lattice Boltzmann equation[J]. Progress in Aerospace Sciences, 2003, 39 (5): 329- 367
doi: 10.1016/S0376-0421(03)00003-4