Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (9): 1814-1823    DOI: 10.3785/j.issn.1008-973X.2023.09.013
    
Analysis of transient response characteristics of thermoelectric power generation device under different boundary conditions
Ding LUO(),Hai-feng WU,Xue-lin YANG
College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China
Download: HTML     PDF(2225KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A three-dimension transient thermal-electric coupling numerical model for thermoelectric power generation device was established considering the unsteady state of heat sources in practical applications. Taking six waveforms as heat source input, including step increase, step decrease, linear increase, linear decrease, sine wave, and triangular wave, the response characteristics under transient temperature boundary condition and heat flux boundary condition were analyzed and compared. Results show that the model can accurately simulate the transient output performance of thermoelectric power generation device. And the errors of voltage and power between the model and the experimental results were 3.30% and 6.58% respectively. Due to the continuity of temperature change, the transient heat flux boundary condition is more reasonable than the transient temperature boundary condition. Even if the heat source changes sharply, the output power presents a smooth changing trend, and there is a time delay phenomenon due to the thermal inertia. The periodic heat source can improve the performance of thermoelectric power generation device. The output power were increased by 7.48% and 5.76%, and the conversion efficiency were increased by 11.58% and 8.48% for the heat sources of the sine wave and the triangular wave, respectively.



Key wordsthermoelectric power generation device      transient state      boundary condition      numerical model      response characteristic     
Received: 17 November 2022      Published: 16 October 2023
CLC:  TK 01+9  
Fund:  国家自然科学基金资助项目(52306017, 52072217, 22179071);湖北省自然科学基金资助项目(2023AFB093)
Cite this article:

Ding LUO,Hai-feng WU,Xue-lin YANG. Analysis of transient response characteristics of thermoelectric power generation device under different boundary conditions. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1814-1823.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.09.013     OR     https://www.zjujournals.com/eng/Y2023/V57/I9/1814


不同边界条件下热电发电器件瞬态响应特性分析

鉴于实际应用中热源的非稳态特性,建立热电发电器件的三维瞬态热-电耦合数值模型,以阶跃上升、阶跃下降、线性上升、线性下降、正弦波和三角波6种热源波形作为输入,对比并分析在瞬态温度边界条件和瞬态热流边界条件下的响应特性. 结果表明:该模型能准确模拟热电发电器件的瞬态输出性能,仿真结果与试验测量的电压和功率误差分别为3.30%和6.58%;由于温度变化具有连续性,瞬态热流边界条件比瞬态温度边界条件更合理;受热惯性的影响,即使热源输入急剧变化,热电发电器件的输出功率仍呈现平缓的变化趋势,且存在时滞现象;周期性热源能够提升热电发电器件的输出性能,在正弦波和三角波的周期性热源中,热电发电器件的输出功率分别提升了7.48%和5.76%,转换效率分别提升了11.58%和8.48%.


关键词: 热电发电器件,  瞬态,  边界条件,  数值模型,  响应特性 
Fig.1 Schematic of structure for thermoelectric generator device
参数 数值
P型半导体 N型半导体
热导率
λ/(W·m?1·K?1)
$ \begin{aligned} 1.685 &\times {10^{ - 7}}{T^3} - \\& 1.895 \times {10^{ - 4}}{T^2}+ \\& 0.070T - 6.839 \\ \end{aligned} $ $ \begin{aligned} 1.474 &\times {10^{ - 7}}{T^3} - \\ &1.590 \times {10^{ - 4}}{T^2}+ \\ &0.057T - 5.096 \\ \end{aligned} $
塞贝克系数
S/(μV·K?1)
$ \begin{aligned} 1.322 & \times {10^{ - 5}}{T^3} - \\ &0.017{T^2}+ \\ &7.310T - 853.661 \\ \end{aligned} $ $ \begin{aligned} - 1.524 & \times {10^{ - 5}}{T^3}+ \\ &0.019{T^2} - \\ &8.230T+981.109 \\ \end{aligned} $
电阻率
σ?1/(10?5 Ω·m)
$ \begin{aligned} - 9.035 & \times {10^{ - 9}}{T^3}+ \\ &1.638 \times {10^{ - 5}}{T^2} - \\& 4.250 \times {10^{ - 3}}T+0.665 \\ \end{aligned} $ $ \begin{aligned} 4.452 & \times {10^{ - 8}}{T^3} - \\& 5.529 \times {10^{ - 5}}{T^2}+ \\& 2.591 \times {10^{ - 2}}T - 3.409 \\ \end{aligned} $
比热容
c/(J·kg?1·K?1)
$ \begin{aligned} 1.729 & \times {10^{ - 5}}{T^3} - \\& 0.021{T^2}+ \\& 8.440T - 945.686 \\ \end{aligned} $ $ \begin{aligned} 1.020 & \times {10^{ - 5}}{T^3} - \\& 1.280 \times {10^{ - 2}}{T^2}+ \\& 5.372T - 581.600 \\ \end{aligned} $
Tab.1 Thermoelectric material properties of TEG1-12708
Fig.2 Transient heat source boundary conditions
Fig.3 Load output curves of thermoelectric generator device under different steady-state temperature inputs
Fig.4 Simulation results of thermoelectric generator device under sine wave boundary conditions
Fig.5 Output power and conversion efficiency under transient temperature boundary conditions
Fig.6 Output power under transient heat flux boundary conditions
Fig.7 Conversion efficiency and heat absorption under transient heat flux boundary conditions
Fig.8 Heat changes of thermoelectric semiconductors under transient heat flux boundary conditions
Fig.9 Temperature changes under different boundary conditions
Fig.10 Ouput power and conversion efficiency under different boundary conditions
Fig.11 Comparison of transient and steady-state performance under different boundary conditions
Fig.12 Transient experimental test rig
Fig.13 Comparison between simulation and experimental results
[1]   毛佳妮, 江述帆, 方奇, 等 新型太阳能温差发电集热体的传热特性[J]. 浙江大学学报: 工学版, 2015, 49 (11): 2205- 2213
MAO Jia-ni, JIANG Shu-fan, FANG Qi, et al Heat transfer characteristics of novel heat collector on solar-thermoelectric power generation[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (11): 2205- 2213
[2]   LUO D, YAN Y Y, LI Y, et al Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power[J]. Energy, 2023, 281: 128319
doi: 10.1016/j.energy.2023.128319
[3]   LALONDE A D, PEI Y Z, WANG H, et al Lead telluride alloy thermoelectrics[J]. Materials Today, 2011, 14 (11): 526- 532
doi: 10.1016/S1369-7021(11)70278-4
[4]   LUO D, SUN Z Y, WANG R C Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery[J]. Energy, 2022, 238: 121816
doi: 10.1016/j.energy.2021.121816
[5]   SHEN Z G, TIAN L L, LIU X Automotive exhaust thermoelectric generators: current status, challenges and future prospects[J]. Energy Conversion and Management, 2019, 195: 1138- 1173
doi: 10.1016/j.enconman.2019.05.087
[6]   LUO D, WU Z H, YAN Y Y, et al Optimal design of a heat exchanger for automotive thermoelectric generator systems applied to a passenger car[J]. Applied Thermal Engineering, 2023, 227: 120360
doi: 10.1016/j.applthermaleng.2023.120360
[7]   LV H C, LIANG L R, ZHANG Y C, et al A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting[J]. Nano Energy, 2021, 88: 106260
doi: 10.1016/j.nanoen.2021.106260
[8]   于冉冉, 刘联胜, 葛明慧, 等 太阳能温差发电系统的性能[J]. 浙江大学学报: 工学版, 2018, 52 (4): 769- 774
YU Ran-ran, LIU Lian-sheng, GE Ming-hui, et al Performance of solar thermoelectric power generation system[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 769- 774
[9]   SUN Z Y, LUO D, WANG R C, et al Evaluation of energy recovery potential of solar thermoelectric generators using a three-dimensional transient numerical model[J]. Energy, 2022, 256: 124667
doi: 10.1016/j.energy.2022.124667
[10]   LI G N, ZHENG Y Q, HU J E, et al Experiments and a simplified theoretical model for a water-cooled, stove-powered thermoelectric generator[J]. Energy, 2019, 185: 437- 448
doi: 10.1016/j.energy.2019.07.023
[11]   CHEN L G, MENG F K, GE Y L, et al Performance optimization of a class of combined thermoelectric heating devices[J]. Science China Technological Sciences, 2020, 63: 2640- 2648
doi: 10.1007/s11431-019-1518-x
[12]   LUO D, YAN Y Y, CHEN W H, et al A comprehensive hybrid transient CFD-thermal resistance model for automobile thermoelectric generators[J]. International Journal of Heat and Mass Transfer, 2023, 211: 124203
doi: 10.1016/j.ijheatmasstransfer.2023.124203
[13]   LUO D, WANG R C, YU W, et al Parametric study of a thermoelectric module used for both power generation and cooling[J]. Renewable Energy, 2020, 154: 542- 552
doi: 10.1016/j.renene.2020.03.045
[14]   LUO D, YAN Y Y, LI Y, et al A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems[J]. Applied Energy, 2023, 332: 120502
doi: 10.1016/j.apenergy.2022.120502
[15]   FAN L H, ZHANG G B, WANG R F, et al A comprehensive and time-efficient model for determination of thermoelectric generator length and cross-section area[J]. Energy Conversion and Management, 2016, 122: 85- 94
doi: 10.1016/j.enconman.2016.05.064
[16]   MENG J H, ZHANG X X, WANG X D Characteristics analysis and parametric study of a thermoelectric generator by considering variable material properties and heat losses[J]. International Journal of Heat and Mass Transfer, 2015, 80: 227- 235
doi: 10.1016/j.ijheatmasstransfer.2014.09.023
[17]   LIAO M J, HE Z, JIANG C P, et al A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer[J]. Applied Thermal Engineering, 2018, 133: 493- 500
doi: 10.1016/j.applthermaleng.2018.01.080
[18]   LUO D, ZHAO Y, YAN Y Y, et al Development of two transient models for predicting dynamic response characteristics of an automobile thermoelectric generator system[J]. Applied Thermal Engineering, 2023, 221: 119793
doi: 10.1016/j.applthermaleng.2022.119793
[19]   ZHANG A B, PANG D D, WANG B L, et al Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting[J]. Energy, 2023, 262: 125621
doi: 10.1016/j.energy.2022.125621
[1] Cong-er BAI,Zhe-jie SUN,Mei-juan QIN,Xiao WANG,Yong LIU. Dynamic response characteristics of wind turbine drivetrain and influence of support system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1165-1174.
[2] Feng WANG,Zhong-guo SUN,Xu ZHENG,Pei-dong HAN,Guang XI. Discretizing approach for complex three-dimensional geometry based on meshless particle methods[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1597-1605.
[3] Yao ZHANG,Qiang LIU,Xu-nan LIU,Guodong XU,Xiao HONG,Shui-hua ZHOU,Wei-jie LIU,Xi-zeng ZHAO. Variability of rip currents induced by rhythmic sandbars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1849-1857.
[4] Nan-nan ZHAO,Liang HU,Kai MAO,Wen-yu CHEN,Xin FU. Hybrid determination method for acoustic field of ultrasonic volumetric flowmeter[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1466-1473.
[5] YUAN Shi-fei, WU Hong-jie, YIN Cheng-liang. Simplified electrochemical model for Li-ion battery: lithium concentration estimation[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 478-486.
[6] HU De-chao, CHI Long-zhe, YANG Qiong, WANG Min. Development mechanics of scouring funnel before dam of reservoir[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 257-264.
[7] YANG Lian-zhi, ZHANG Liang-liang, YU Lian-ying, SHANG Lan-ge, GAO Yang, WANG Min-zhong. Comparison of solutions from different displacement boundary conditions at fixed end of cantilever beams[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1955-1961.
[8] XU Shao-feng,WANG Jiu-gen. A new wall boundary condition in dissipative particle dynamics[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1603-1610.
[9] LI Hong-xia, LI Guan-qiu, LI Wei. Analysis of in tubes particulate fouling characteristic[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1671-1677.
[10] XIE Dong-feng, PAN Cun-hong, LU Hai-yan, WANG Li-hui, TANG Zi-wen. Study on propagation speed of tidal bore on Qiantang River[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1128-1134.
[11] QIU Lei, TIAN Gang, SHI Zhan-jie, SHEN Hong-lei. Finite-difference method for seismic wave numerical simulation
in presence of topography
—In generally orthogonal curvilinear coordinate system
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1923-1931.