Please wait a minute...
J4  2012, Vol. 46 Issue (10): 1923-1931    DOI: 10.3785/j.issn.1008-973X.2012.10.027
    
Finite-difference method for seismic wave numerical simulation
in presence of topography
—In generally orthogonal curvilinear coordinate system
QIU Lei1, TIAN Gang1, SHI Zhan-jie2, SHEN Hong-lei1
1. Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China; 2. The Research Institute of
Cultural Relics, Zhejiang University, Hangzhou 310058, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A staggered-grid finite-difference approach based on generally orthogonal curvilinear coordinate system was performed to simulate seismic waves including topographic surface in order to solve the problems when dealing with free surface boundary conditions: complex coordinate rotations and interpolations in conventional finite-difference methods and artifacts caused by staircase approximation to irregular free surface. The physical domain under study was discretized by orthogonal boundary-conforming curvilinear grids, which were then mapped onto regularly rectangular grids in computational domain. The first order elastic velocitystress equations and free surface boundary conditions were solved in computational domain. The algorithm can not only avoid artifacts caused by staircase approximation to irregular free surface, but also make free surface boundary conditions simple and direct to implement. Numerical results show that the method is feasible and can be applied to the study of seismic wave propagation with topographic surface.



Published: 01 October 2012
CLC:  P 631.4  
Cite this article:

QIU Lei, TIAN Gang, SHI Zhan-jie, SHEN Hong-lei. Finite-difference method for seismic wave numerical simulation
in presence of topography
—In generally orthogonal curvilinear coordinate system. J4, 2012, 46(10): 1923-1931.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.10.027     OR     http://www.zjujournals.com/eng/Y2012/V46/I10/1923


起伏地表条件下有限差分地震波数值模拟
——基于广义正交曲线坐标系

为了解决常规有限差分法在处理起伏地表自由边界条件时存在的需进行复杂坐标旋转和插值运算,以及对起伏地表进行阶梯状离散近似所产生的虚假绕射波等问题,把待求解的物理域离散成贴体正交曲线网格,将该网格映射到计算域的矩形规则网格上,在该计算域内求解一阶弹性波速度-应力方程及相应的自由边界条件,实现了广义正交曲线坐标系下的起伏地表地震波数值模拟问题.该算法简化了自由边界条件的实施,避免了因起伏地表阶梯化网格离散近似所产生的虚假波.数值模拟结果表明,该方法是可行的,可以用于起伏地表条件下地震波传播规律的研究.

[1] 阎世信,刘怀山,姚雪根.山地地球物理勘探技术 [M].北京:石油工业出版社,2000: 1-85.
[2] 邓志文.复杂山地地震勘探 [M].北京:石油工业出版社,2006: 1-30.
[3] 郑鸿明,吕焕通,娄兵,等.地震勘探近地表异常校正 [M].北京:石油工业出版社,2009.
[4] 孙建国.复杂地表条件下地球物理场数值模拟方法评述 [J].世界地质,2007, 26(3): 345-362.
SUN Jianguo. Methods for numerical modeling of geophysical fields under complex topographical conditions: a critical review [J]. Global Geology, 2007, 26(3): 345-362.
[5] 牟永光,裴正林.三维复杂介质地震波数值模拟[M].北京:石油工业出版社,2005: 1-13.
[6] 张永刚.复杂介质地震波场模拟分析与应用[M].北京:石油工业出版社,2007: 153-168.
[7] BOUCHON M,SCHULTZ C,TOKSOZ M. Effect of threedimensional topography on seismic motion [J]. Journal of Geophysical Research, 1996, 101(B3): 5835-5846.
[8] FU L. Numerical study of generalized LipmannSchwinger integral equation including surface topography [J]. Geophysics, 2003, 68 (2): 665-671.
[9] CARCIONE J,HERMAN G,KROODE A. Seismic modeling [J]. Geophysics, 2002, 67(4): 1304-1325.
[10] 孙章庆,孙建国,韩复兴,等.波前快速推进法起伏地表地震波走时计算 [J].勘探地球物理进展,2007,30(5): 392-395.
SUN Zhangqing,SUN Jianguo,HAN Fuxing,et al. Traveltime computation using fast marching method from rugged topography [J]. Progress in Exploration Geophysics, 2007, 30(5): 392-395.
[11] 孙章庆,孙建国,韩复兴.复杂地表条件下快速推进法地震波走时计算[J].计算物理,2010, 27(2): 281-286.
SUN Zhangqing, SUN Jianguo, HAN Fuxing. Traveltime computation using fast marching method under complex topographical conditions [J]. Chinese Journal of Computational Physics, 2010, 27(2): 281-286.
[12] 孙章庆,孙建国,韩复兴.复杂地表条件下基于线性插值和窄带技术的地震波走时计算 [J].地球物理学报,2009, 52(11): 2846-2853.
SUN Zhangqing,SUN Jianguo,HAN Fuxing. Traveltime computation using linear interpolation and narrow band technique under complex topographical conditions [J]. Chinese Journal of Geophysics, 2009, 52(11): 2846-2853.
[13] SUN J,SUN Z,HAN F. A finite difference scheme for solving the eikonal equation including surface topography [J]. Geophysics, 2011, 76 (4): T53-T63.
[14] RICHTER G R. An explicit finite element method for the wave equation [J]. Applied Numerical Mathematics, 1994, 16(1/2): 65-80.
[15] KOMATITSCH D, VILOTTE J P. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures [J]. Bulletin of the Seismological Society of America, 1998, 88(2): 368-392.
[16] GRAVES R W. Simulating seismic wave propagation in 3D elastic media using staggeredgrid finite differences [J]. Bulletin of the Seismological Society of America, 1996, 86(4): 1091-1106.
[17] ROBERTSSON J O A. A numerical freesurface condition for elastic/viscoelastic finitedifference modeling in the presence of topography [J]. Geophysics, 1996, 61(6): 1921-1934.
[18] OHMINATO T, CHOUET B A. A freesurface boundary condition for including 3D topography in the finitedifference method [J]. Bulletin of the Seismological Society of America, 1997, 87(2): 494-515.
[19] HAYASHI K, BURNS D, TOKSOZ M. Discontinuousgrid finitedifference seismic modeling including surface topography [J]. Bulletin of the Seismological Society of America, 2001, 91(6): 1750-1764.
[20] WANG Y,XU J,SCHUSTER G. Viscoelastic wave simulation in basin by a variablegrid finitedifference method [J]. Bulletin of the Seismological Society of America, 2001, 91(6): 1741-1749.
[21] HESTHOLM S, RUUD B. 3D finitedifference elastic wave modeling including surface topography [J]. Geophysics, 1998, 63(2): 613-622.
[22] RUUD B, HESTHOLM S. 2D surface topography boundary conditions in seismic wave modeling [J]. Geophysical Prospecting, 2001, 49(4): 445-460.
[23] HESTHOLM S, RUUD B. 3D freeboundary conditions for coordinatetransform finitedifference seismic modeling [J]. Geophysical Prospecting, 2002, 50(5): 463-474.
[24] TARRASS I,GIRAUD L,THORE P. New curvilinear scheme for elastic wave propagation in presence of curved topography [J]. Geophysical Prospecting, 2011, 59(5): 889-906.
[25] ZHANG W, CHEN X F. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation [J]. Geophysical Journal International, 2006, 167(1): 337-353.
[26] APPELO D,PETERSSON N. A stable finite difference method for the elastic wave equation on complex geometries with free surfaces [J]. Communications in Computational Physics, 2009, 5(1): 84-107.
[27] LAN H,ZHONG Z. Threedimensional wavefield simulation in heterogeneous transversely isotropic medium with irregular free surface [J]. Bulletin of the Seismological Society of America, 2011, 101(3): 1354-1370.
[28] THOMPSON J F, WARSI Z U A, MASTIN C W. Numerical grid generation foundations and applications [M]. New York: North Hollad Publishing Company, 1985: 188-263.
[29] 蒋丽丽,孙建国.基于Poisson方程的曲网格生成技术[J].世界地质,2008,27(3): 298-305.
JIANG Lili, SUN Jianguo. Source terms of elliptic system in grid generation [J]. Global Geology, 2008, 27(3): 298-305.
[30] 孙建国,蒋丽丽.用于起伏地表条件下地球物理场数值模拟的正交曲网格生成技术[J].石油地球物理勘探,2009,44(4): 494-500.
SUN Jianguo, JIANG Lili. Orthogonal curvilinear grid generation technique used for numeric simulation of geophysical fields in undulating surface condition [J]. Oil Geophysical Prospecting, 2009, 44(4): 494-500.
[31] THOMPSON J, SONI B, WEATHERILL N. Handbook of grid generation [M]. New York: CRC Press, 1999.
[32] AKCELIK V, JARAMAZ B, GHATTAS O. Nearly orthogonal twodimensional grid generation with aspect ratio control [J]. Journal of Computational Physics, 2001, 171(2): 805-821.
[33] ZHANG Y, JIA Y, WANG S. 2D nearly orthogonal mesh generation [J]. International Journal for Numerical Methods in Fluids, 2004, 46(7): 685-707.
[34] THOMAS P, MIDDLECOFF J. Direct control of the grid point distribution in meshes generated by elliptic equations [J]. AIAA Journal, 1980, 18(6): 652-656.
[35] SORENSON R, STEGER J. Automatic meshpoint clustering near a boundary in grid generation [J]. Journal of Computational Physics, 1979, 33(3): 405-410.
[36] AKI K, RICHARDS P G. Quantitative seismology [M]. 2nd ed. Sausalito: University Science Books, 2002: 30-34.
[37] SADD M. Elasticity theory, applications, and numerics [M]. 2nd ed. Burlington: Academic Press, 2009: 55-76.
[38] XIE Z, CHAN C, ZHANG B. An explicit fourthorder orthogonal curvilinear staggeredgrid FDTD method for Maxwell’s equations [J]. Journal of Computational Physics, 2002, 175(2): 739-763.
[39] MARTIN R, KOMATITSCH D, GEDNEY S, et al. A highorder time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using auxiliary differential equation (ADEPML) [J]. Computer Modeling in Engineering and Sciences, 2010, 56(1): 17-41.
[40] HU F, HUSSAINI M, MANTHEY J. Lowdissipation and lowdispersive RungeKutta schemes for computational acoustic [J]. Journal of Computational Physics, 1996, 124(1): 177-191.
[41] 马啸,杨顶辉,张锦华.求解声波方程的辛可分RungeKutta方法[J].地球物理学报,2010,53(8): 1993-2003.
MA Xiao, YANG Dinghui, ZHANG Jinhua. Symplectic partitioned RungeKutta method for solving the acoustic wave equation [J]. Chinese Journal of GeophysicsChinese Edition, 2010, 53(8): 1993-2003.
[42] ALLAMPALLI V, HIXON R, NALLASAMY M, et al. Highaccuracy largestep explicit RungeKutta (HALERK) schemes for computational aeroacoustics [J]. Journal of Computational Physics, 1996, 228(10): 3837-3850.
[43] KOMATITSCH M, COUTEL F, MORA P. Tensorial formulation of the wave equation for modeling curved interfaces [J]. Geophysical Journal International, 1996, 127(1): 156-168.
[44] CUNHA C A. Elastic modeling in discontinuous media [J]. Geophysics, 1993, 58(12): 1840-1851.