[1] 阎世信,刘怀山,姚雪根.山地地球物理勘探技术 [M].北京:石油工业出版社,2000: 1-85.
[2] 邓志文.复杂山地地震勘探 [M].北京:石油工业出版社,2006: 1-30.
[3] 郑鸿明,吕焕通,娄兵,等.地震勘探近地表异常校正 [M].北京:石油工业出版社,2009.
[4] 孙建国.复杂地表条件下地球物理场数值模拟方法评述 [J].世界地质,2007, 26(3): 345-362.
SUN Jianguo. Methods for numerical modeling of geophysical fields under complex topographical conditions: a critical review [J]. Global Geology, 2007, 26(3): 345-362.
[5] 牟永光,裴正林.三维复杂介质地震波数值模拟[M].北京:石油工业出版社,2005: 1-13.
[6] 张永刚.复杂介质地震波场模拟分析与应用[M].北京:石油工业出版社,2007: 153-168.
[7] BOUCHON M,SCHULTZ C,TOKSOZ M. Effect of threedimensional topography on seismic motion [J]. Journal of Geophysical Research, 1996, 101(B3): 5835-5846.
[8] FU L. Numerical study of generalized LipmannSchwinger integral equation including surface topography [J]. Geophysics, 2003, 68 (2): 665-671.
[9] CARCIONE J,HERMAN G,KROODE A. Seismic modeling [J]. Geophysics, 2002, 67(4): 1304-1325.
[10] 孙章庆,孙建国,韩复兴,等.波前快速推进法起伏地表地震波走时计算 [J].勘探地球物理进展,2007,30(5): 392-395.
SUN Zhangqing,SUN Jianguo,HAN Fuxing,et al. Traveltime computation using fast marching method from rugged topography [J]. Progress in Exploration Geophysics, 2007, 30(5): 392-395.
[11] 孙章庆,孙建国,韩复兴.复杂地表条件下快速推进法地震波走时计算[J].计算物理,2010, 27(2): 281-286.
SUN Zhangqing, SUN Jianguo, HAN Fuxing. Traveltime computation using fast marching method under complex topographical conditions [J]. Chinese Journal of Computational Physics, 2010, 27(2): 281-286.
[12] 孙章庆,孙建国,韩复兴.复杂地表条件下基于线性插值和窄带技术的地震波走时计算 [J].地球物理学报,2009, 52(11): 2846-2853.
SUN Zhangqing,SUN Jianguo,HAN Fuxing. Traveltime computation using linear interpolation and narrow band technique under complex topographical conditions [J]. Chinese Journal of Geophysics, 2009, 52(11): 2846-2853.
[13] SUN J,SUN Z,HAN F. A finite difference scheme for solving the eikonal equation including surface topography [J]. Geophysics, 2011, 76 (4): T53-T63.
[14] RICHTER G R. An explicit finite element method for the wave equation [J]. Applied Numerical Mathematics, 1994, 16(1/2): 65-80.
[15] KOMATITSCH D, VILOTTE J P. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures [J]. Bulletin of the Seismological Society of America, 1998, 88(2): 368-392.
[16] GRAVES R W. Simulating seismic wave propagation in 3D elastic media using staggeredgrid finite differences [J]. Bulletin of the Seismological Society of America, 1996, 86(4): 1091-1106.
[17] ROBERTSSON J O A. A numerical freesurface condition for elastic/viscoelastic finitedifference modeling in the presence of topography [J]. Geophysics, 1996, 61(6): 1921-1934.
[18] OHMINATO T, CHOUET B A. A freesurface boundary condition for including 3D topography in the finitedifference method [J]. Bulletin of the Seismological Society of America, 1997, 87(2): 494-515.
[19] HAYASHI K, BURNS D, TOKSOZ M. Discontinuousgrid finitedifference seismic modeling including surface topography [J]. Bulletin of the Seismological Society of America, 2001, 91(6): 1750-1764.
[20] WANG Y,XU J,SCHUSTER G. Viscoelastic wave simulation in basin by a variablegrid finitedifference method [J]. Bulletin of the Seismological Society of America, 2001, 91(6): 1741-1749.
[21] HESTHOLM S, RUUD B. 3D finitedifference elastic wave modeling including surface topography [J]. Geophysics, 1998, 63(2): 613-622.
[22] RUUD B, HESTHOLM S. 2D surface topography boundary conditions in seismic wave modeling [J]. Geophysical Prospecting, 2001, 49(4): 445-460.
[23] HESTHOLM S, RUUD B. 3D freeboundary conditions for coordinatetransform finitedifference seismic modeling [J]. Geophysical Prospecting, 2002, 50(5): 463-474.
[24] TARRASS I,GIRAUD L,THORE P. New curvilinear scheme for elastic wave propagation in presence of curved topography [J]. Geophysical Prospecting, 2011, 59(5): 889-906.
[25] ZHANG W, CHEN X F. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation [J]. Geophysical Journal International, 2006, 167(1): 337-353.
[26] APPELO D,PETERSSON N. A stable finite difference method for the elastic wave equation on complex geometries with free surfaces [J]. Communications in Computational Physics, 2009, 5(1): 84-107.
[27] LAN H,ZHONG Z. Threedimensional wavefield simulation in heterogeneous transversely isotropic medium with irregular free surface [J]. Bulletin of the Seismological Society of America, 2011, 101(3): 1354-1370.
[28] THOMPSON J F, WARSI Z U A, MASTIN C W. Numerical grid generation foundations and applications [M]. New York: North Hollad Publishing Company, 1985: 188-263.
[29] 蒋丽丽,孙建国.基于Poisson方程的曲网格生成技术[J].世界地质,2008,27(3): 298-305.
JIANG Lili, SUN Jianguo. Source terms of elliptic system in grid generation [J]. Global Geology, 2008, 27(3): 298-305.
[30] 孙建国,蒋丽丽.用于起伏地表条件下地球物理场数值模拟的正交曲网格生成技术[J].石油地球物理勘探,2009,44(4): 494-500.
SUN Jianguo, JIANG Lili. Orthogonal curvilinear grid generation technique used for numeric simulation of geophysical fields in undulating surface condition [J]. Oil Geophysical Prospecting, 2009, 44(4): 494-500.
[31] THOMPSON J, SONI B, WEATHERILL N. Handbook of grid generation [M]. New York: CRC Press, 1999.
[32] AKCELIK V, JARAMAZ B, GHATTAS O. Nearly orthogonal twodimensional grid generation with aspect ratio control [J]. Journal of Computational Physics, 2001, 171(2): 805-821.
[33] ZHANG Y, JIA Y, WANG S. 2D nearly orthogonal mesh generation [J]. International Journal for Numerical Methods in Fluids, 2004, 46(7): 685-707.
[34] THOMAS P, MIDDLECOFF J. Direct control of the grid point distribution in meshes generated by elliptic equations [J]. AIAA Journal, 1980, 18(6): 652-656.
[35] SORENSON R, STEGER J. Automatic meshpoint clustering near a boundary in grid generation [J]. Journal of Computational Physics, 1979, 33(3): 405-410.
[36] AKI K, RICHARDS P G. Quantitative seismology [M]. 2nd ed. Sausalito: University Science Books, 2002: 30-34.
[37] SADD M. Elasticity theory, applications, and numerics [M]. 2nd ed. Burlington: Academic Press, 2009: 55-76.
[38] XIE Z, CHAN C, ZHANG B. An explicit fourthorder orthogonal curvilinear staggeredgrid FDTD method for Maxwell’s equations [J]. Journal of Computational Physics, 2002, 175(2): 739-763.
[39] MARTIN R, KOMATITSCH D, GEDNEY S, et al. A highorder time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using auxiliary differential equation (ADEPML) [J]. Computer Modeling in Engineering and Sciences, 2010, 56(1): 17-41.
[40] HU F, HUSSAINI M, MANTHEY J. Lowdissipation and lowdispersive RungeKutta schemes for computational acoustic [J]. Journal of Computational Physics, 1996, 124(1): 177-191.
[41] 马啸,杨顶辉,张锦华.求解声波方程的辛可分RungeKutta方法[J].地球物理学报,2010,53(8): 1993-2003.
MA Xiao, YANG Dinghui, ZHANG Jinhua. Symplectic partitioned RungeKutta method for solving the acoustic wave equation [J]. Chinese Journal of GeophysicsChinese Edition, 2010, 53(8): 1993-2003.
[42] ALLAMPALLI V, HIXON R, NALLASAMY M, et al. Highaccuracy largestep explicit RungeKutta (HALERK) schemes for computational aeroacoustics [J]. Journal of Computational Physics, 1996, 228(10): 3837-3850.
[43] KOMATITSCH M, COUTEL F, MORA P. Tensorial formulation of the wave equation for modeling curved interfaces [J]. Geophysical Journal International, 1996, 127(1): 156-168.
[44] CUNHA C A. Elastic modeling in discontinuous media [J]. Geophysics, 1993, 58(12): 1840-1851. |