|
|
Microscopic dynamics of sand particles based on X-ray computed tomography and in-situ triaxial compression |
Ze-kai MIAO1,2( ),Da-ren ZHANG1,2,Gang MA1,2,*( ),Yu-xiong ZOU1,2,Yuan CHEN3,Wei ZHOU1,2,Yu-xuan XIAO4 |
1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China 2. Institute of Water Engineering Sciences, Wuhan University, Wuhan 430072, China 3. CISPDR Corporation, Wuhan 430010, China 4. China Railway Siyuan Survey and Design Group Co. Ltd, Wuhan 430063, China |
|
|
Abstract X-ray computed tomography (CT) and in-situ triaxial shear test were combined to analyze the microscopic dynamics evolution of Ottawa sand under triaxial compression. A total of 15 X-ray scans were taken during the experiment. The particles were separated by the image segmentation algorithm and reconstructed by spherical harmonic functions. The particles were matched exactly and tracked during the loading process based on the multi-scale morphological indicators of particles, and the evolution of microscopic dynamics and microscopic structural indicators, such as particle displacement, rotation, local non-affine motion, and local porosity were analyzed. During the shear process, the vertical displacement distribution of the particle system presents two conical regions, and the rotational distribution of the particles exhibits obvious X-shaped shear bands. The local non-affine motion, which was used to measure the local plastic deformation, was significantly correlated with the local volume fraction, suggesting a causal relationship between the microscopic dynamics and particle microstructure, i.e., plastic deformation was more likely to occur where the local free volume was large.
|
Received: 18 September 2022
Published: 31 August 2023
|
|
Fund: 国家重点研发计划资助项目(2022YFC3005503);国家自然科学基金资助项目(51825905,U1865204);云南省重大科技专项计划资助项目(202202AF080004) |
Corresponding Authors:
Gang MA
E-mail: 2016301580064@whu.edu.cn;magang630@whu.edu.cn
|
基于X-ray CT原位三轴剪切试验的砂土颗粒材料微观动力学
将X射线断层扫描技术(CT)与原位三轴剪切试验相结合,分析渥太华砂在剪切过程中的微观动力学演化规律. 在试验过程中共完成15次X射线扫描,使用图像分割算法进行颗粒分割并使用球谐函数重构颗粒的表面形貌,根据颗粒的多尺度形态指标序列实现整个加载过程中颗粒的准确匹配与追踪,并分析颗粒位移、转动、局部非仿射运动和局部孔隙率等微观动力学和微观结构指标的演化规律. 在剪切过程中颗粒体系的竖向位移分布呈现2个锥形区域,颗粒的转动分布出现明显的X型剪切带. 用于度量局部塑性变形程度的局部非仿射运动和局部体积分数呈现出较为明显的相关关系,表明颗粒微观动力学与其微观结构之间存在因果关系,局部自由体积较大的地方更易发生塑性变形.
关键词:
颗粒材料,
X射线断层扫描(CT),
三轴试验,
微观动力学,
微观结构
|
|
[1] |
孙其诚, 金峰 颗粒物质的多尺度结构及其研究框架[J]. 物理, 2009, 38 (4): 225- 232 SUN Qi-cheng, JIN Feng The multiscale structure of granular matter and its mechanics[J]. Physics, 2009, 38 (4): 225- 232
doi: 10.3321/j.issn:0379-4148.2009.04.002
|
|
|
[2] |
王光谦, 孙其诚 颗粒物质及其多尺度结构统计规律[J]. 工程力学, 2009, 26 (Suppl.2): 1- 7 WANG Guang-qian, SUN Qi-cheng Granular matter and the scaling laws[J]. Engineering Mechanics, 2009, 26 (Suppl.2): 1- 7
|
|
|
[3] |
郑虎, 牛文清, 毛无卫, 等 颗粒物质力学及其在工程地质领域中的应用初探[J]. 工程地质学报, 2021, 29 (1): 12- 24 ZHENG Hu, NIU Wen-qing, MAO Wu-wei, et al Mechanics of granular material and the application in engineering geology[J]. Journal of Engineering Geology, 2021, 29 (1): 12- 24
doi: 10.13544/j.cnki.jeg.2021-0017
|
|
|
[4] |
周伟, 马刚, 刘嘉英, 等 高堆石坝筑坝材料宏细观变形分析研究进展[J]. 中国科学: 技术科学, 2018, 48 (10): 1068- 1080 ZHOU Wei, MA Gang, LIU Jia-ying, et al Review of macro-and mesoscopic analysis on rockfill materials in high dams[J]. SCIENTIA SINICA Technologica, 2018, 48 (10): 1068- 1080
doi: 10.1360/N092018-00279
|
|
|
[5] |
CHEN Y, MA G, ZHOU W, et al An enhanced tool for probing the microscopic behavior of granular materials based on X-ray micro-CT and FDEM[J]. Computers and Geotechnics, 2021, 132: 103974
doi: 10.1016/j.compgeo.2020.103974
|
|
|
[6] |
HAGEMEIER T, BOERNER M, BUECK A, et al A comparative study on optical techniques for the estimation of granular flow velocities[J]. Chemical Engineering Science, 2015, 131: 63- 75
doi: 10.1016/j.ces.2015.03.045
|
|
|
[7] |
BANDYOPADHYAY R, GITTINGS A S, SUH S S, et al Speckle-visibility spectroscopy: a tool to study time-varying dynamics[J]. Review of Scientific Instruments, 2005, 76 (9): 093110
doi: 10.1063/1.2037987
|
|
|
[8] |
KOU B Q, CAO Y X, LI J D, et al Granular materials flow like complex fluids[J]. Nature, 2017, 551 (7680): 360- 363
doi: 10.1038/nature24062
|
|
|
[9] |
张攀, 赵雪丹, 张国华, 等 垂直载荷下颗粒物质的声波探测和非线性响应[J]. 物理学报, 2016, (2): 210- 216 ZHANG Pan, ZHAO Xue-dan, ZHANG Guo-hua, et al Acoustic detection and nonlinear response of granular materials under vertical vibrations[J]. Acta Physica Sinica, 2016, (2): 210- 216
|
|
|
[10] |
程壮, 王剑锋 用于颗粒土微观力学行为试验的微型三轴试验仪[J]. 岩土力学, 2018, 39 (3): 1123- 1129 CHENG Zhuang, WANG Jian-feng A mini-triaxial apparatus for testing of micro-scale mechanical behavior of granular soils[J]. Rock and Soil Mechanics, 2018, 39 (3): 1123- 1129
doi: 10.16285/j.rsm.2016.0577
|
|
|
[11] |
SU D, YAN W M 3D characterization of general-shape sand particles using microfocus X-ray computed tomography and spherical harmonic functions, and particle regeneration using multivariate random vector[J]. Powder Technology, 2018, 323: 8- 23
doi: 10.1016/j.powtec.2017.09.030
|
|
|
[12] |
ZHAO B, WANG J F 3D quantitative shape analysis on form, roundness, and compactness with μCT[J]. Powder Technology, 2016, 291: 262- 275
doi: 10.1016/j.powtec.2015.12.029
|
|
|
[13] |
ZHANG D R, MA G, DENG Z R, et al A self-adaptive gradient-based particle swarm optimization algorithm with dynamic population topology[J]. Applied Soft Computing, 2022, 130: 109660
doi: 10.1016/j.asoc.2022.109660
|
|
|
[14] |
KHALILI A, MATYKA M, MOHAMMADI R M, et al Porosity variation within a porous bed composed of multisized grains[J]. Powder Technology, 2018, 338: 830- 835
doi: 10.1016/j.powtec.2018.07.039
|
|
|
[15] |
YANG B H, WU A X, MIAO X X, et al 3D characterization and analysis of pore structure of packed ore particle beds based on computed tomography images[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (3): 833- 838
doi: 10.1016/S1003-6326(14)63131-9
|
|
|
[16] |
WIEBICKE M, ANDO E, VIGGIANI G, et al Measuring the evolution of contact fabric in shear bands with X-ray tomography[J]. Acta Geotechnica, 2020, 15 (1): 79- 93
doi: 10.1007/s11440-019-00869-9
|
|
|
[17] |
CHENG Z, WANG J F A particle-tracking method for experimental investigation of kinematics of sand particles under triaxial compression[J]. Powder Technology, 2018, 328 (1): 436- 451
|
|
|
[18] |
LIM K W, KAWAMOTO R, ANDò E, et al Multiscale characterization and modeling of granular materials through a computational mechanics avatar: a case study with experiment[J]. Acta Geotechnica, 2016, 11 (2): 243- 253
doi: 10.1007/s11440-015-0405-9
|
|
|
[19] |
ANDO E, HALL S A, VIGGIANI G, et al Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach[J]. Acta Geotechnica, 2012, 7 (1): 1- 13
doi: 10.1007/s11440-011-0151-6
|
|
|
[20] |
杨忠平, 刘浩宇, 李进, 等 土石混合料-基岩接触面剪切力学特性及剪切带变形特征研究[J]. 岩石力学与工程学报, 2023, 42 (2): 292- 306 YANG Zhong-ping, LIU Hao-yu, LI Jin, et al Study on shear mechanical properties and deformation characteristics of shear zone of soil-rock mixture-bedrock interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (2): 292- 306
|
|
|
[21] |
杨晓娟, 马刚, 周恒, 等 基于复杂网络的岩土颗粒材料分散性失稳先兆研究[J]. 岩土力学, 2022, 43 (7): 1978- 1988 YANG Xiao-juan, MA Gang, ZHOU Heng, et al Study on precursors of diffuse instability of granular materials based on complex network theory[J]. Rock and Soil Mechanics, 2022, 43 (7): 1978- 1988
|
|
|
[22] |
MA G, ZOU Y X, CHEN Y, et al Spatial correlation and temporal evolution of plastic heterogeneity in sheared granular materials[J]. Powder Technology, 2021, 378: 263- 273
doi: 10.1016/j.powtec.2020.09.053
|
|
|
[23] |
MA G, ZHOU W, REGUEIRO R A, et al Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388- 397
doi: 10.1016/j.powtec.2016.11.046
|
|
|
[24] |
CHENG Z, WANG J F, MATTHEW R C, et al A miniature triaxial apparatus for investigating the micromechanics of granular soils with in situ X-ray micro-tomography scanning[J]. Frontiers of Structural and Civil Engineering, 2020, 14 (2): 357- 373
doi: 10.1007/s11709-019-0599-2
|
|
|
[25] |
ZHAO B D, WANG J F, GIOACCHINO V, et al An investigation of single sand particle fracture using X-ray micro-tomography[J]. Géotechnique, 2015, 65 (8): 625- 641
|
|
|
[26] |
SHEN L, FARID H, MCPEEK M A Modeling three-dimensional morphological structures using spherical harmonics[J]. Evolution: International Journal of Organic Evolution, 2009, 63 (4): 1003- 1016
doi: 10.1111/j.1558-5646.2008.00557.x
|
|
|
[27] |
ZHOU B D, WANG J F, WANG H A novel particle tracking method for granular sands based on spherical harmonic rotational invariants[J]. Géotechnique, 2018, 68 (12): 1116- 1123
|
|
|
[28] |
ZHOU B, WANG J F, ZHAO B D Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics[J]. Engineering Geology, 2015, 184: 126- 137
doi: 10.1016/j.enggeo.2014.11.009
|
|
|
[29] |
ZHOU B, WANG J F, WANG H Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 2018, 68 (1): 18- 30
|
|
|
[30] |
付茹, 胡新丽, 周博, 等 砂土颗粒三维形态的定量表征方法[J]. 岩土力学, 2018, 39 (2): 483- 490 FU Ru, HU Xin-li, ZHOU Bo, et al A quantitative characterization method of 3D morphology of sand particles[J]. Rock and Soil Mechanics, 2018, 39 (2): 483- 490
doi: 10.16285/j.rsm.2017.1825
|
|
|
[31] |
MEI J Z, MA G, WANG Q, et al. Micro- and macroscopic aspects of the intermittent behaviors of granular materials related by graph neural network [J]. International Journal of Solids and Structures, 2022: 111763.
|
|
|
[32] |
ZOU Y X, MA G, MEI J Z, et al Microscopic origin of shape-dependent shear strength of granular materials: a granular dynamics perspective[J]. Acta Geotechnica, 2022, 17 (7): 2697- 2710
doi: 10.1007/s11440-021-01403-6
|
|
|
[33] |
ZHANG Y B, ZHOU W, MA G, et al The structure-property relationship of granular materials with different friction coefficients: insight from machine learning[J]. Extreme Mechanics Letters, 2022, 54: 101759
doi: 10.1016/j.eml.2022.101759
|
|
|
[34] |
CHENG Z, WANG J F Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography[J]. Soils and Foundations, 2018, 58 (6): 1492- 1510
doi: 10.1016/j.sandf.2018.08.008
|
|
|
[35] |
SCHALLER F M, KAPFER S C, EVANS M E, et al Set Voronoi diagrams of 3D assemblies of aspherical particles[J]. Philosophical Magazine, 2013, 93 (31-33): 3993- 4017
doi: 10.1080/14786435.2013.834389
|
|
|
[36] |
邹宇雄, 马刚, 李易奥, 等 椭球颗粒体系剪切过程中自由体积的分布与演化[J]. 力学学报, 2021, 53 (9): 2374- 2383 ZOU Yu-xiong, MA Gang, LI Yi-ao, et al Distribution and evolution of free volume of ellipsoidal particle systems during shearing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (9): 2374- 2383
doi: 10.6052/0459-1879-21-255
|
|
|
[37] |
SCHALLER F M, NEUDECKER M, SAADATFAR M, et al Local origin of global contact numbers in frictional ellipsoid packings[J]. Physical Review Letters, 2015, 114 (15): 158001
doi: 10.1103/PhysRevLett.114.158001
|
|
|
[38] |
XIAO S, LIU H, BAO E, et al Finding defects in disorder: strain-dependent structural fingerprint of plasticity in granular materials[J]. Applied Physics Letters, 2021, 119 (24): 241904
doi: 10.1063/5.0068508
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|