Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1302-1309    DOI: 10.3785/j.issn.1008-973X.2022.07.005
    
Effect of PDMS incorporation on property and microstructure of geopolymer
Sheng-qian RUAN1(),Tie-long WANG2,*(),Shi-kun CHEN1,Yi LIU3,Dong-ming YAN1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Beijing Special Engineering Design and Research Institute, Beijing 100000, China
3. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1424KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Composite materials with different proportions were fabricated in order to characterize the modification effect of polydimethylsiloxane (PDMS) in metakaolin-based geopolymers and improve their waterproof and corrosion resistance. Contact angle measurement, thermogravimetric and strength tests were performed to characterize the wettability, water retention and mechanical strength of the material. Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), backscattering (BSE), and energy dispersive (EDS) tests were performed to analyze the pore distribution, microstructure, and chemical composition. Results show that PDMS can hydrophobically modify the geopolymer gel extensively and uniformly, and the contact angle is about 130° when the mass ratio of PDMS to MK (mPDMS/mMK) is 0.025. Adding the silane coupling agent and drying treatment can improve hydrophobicity. A proper mass ratio of PDMS (0.01≤mPDMS/mMK≤0.025) can improve the strength and toughness of the geopolymer, because the gel structure of the composite is denser. PDMS enhances the binding force of geopolymers to moisture at low temperature, which is significant for reducing drying shrinkage.



Key wordsgeopolymer      polydimethylsiloxane      hydrophobic modification      wettability      mechanical property     
Received: 21 July 2021      Published: 26 July 2022
CLC:  TU 523  
Fund:  国家自然科学基金资助项目(51978608,51879230)
Corresponding Authors: Tie-long WANG     E-mail: shengqian_ruan@zju.edu.cn;wang-tielong@163.com
Cite this article:

Sheng-qian RUAN,Tie-long WANG,Shi-kun CHEN,Yi LIU,Dong-ming YAN. Effect of PDMS incorporation on property and microstructure of geopolymer. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1302-1309.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.005     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1302


内掺PDMS对地聚合物性能和微观结构的影响

为了表征内掺聚二甲基硅氧烷(PDMS)对偏高岭土基地聚合物的改性效果,提高防水和耐腐性能,制备不同配比的复合材料. 采用接触角、热重和强度试验,表征材料的润湿性、保水性和力学性能. 采用压汞法(MIP)、扫描电镜(SEM)、背散射(BSE)和能谱测试(EDS),分析孔隙分布、微观结构和化学组成. 结果表明,PDMS能够对地聚合物凝胶进行广泛且均匀的疏水化改性,当PDMS与MK的质量比(mPDMS/mMK)为0.025时,接触角约为130°. 添加硅烷偶联剂和干燥处理,均能够提高疏水性. 适当质量比的PDMS(0.01≤mPDMS/mMK≤0.025)能够提高地聚合物的强度和韧性,因为复合材料的凝胶结构更致密. PDMS增强了低温状态下地聚合物对水分的束缚力,对减小干缩具有重要意义.


关键词: 地聚合物,  聚二甲基硅氧烷,  疏水改性,  润湿性,  力学性能 
w(Al2O3) w(SiO2) w(TiO2) w(Fe2O3) w(Na2O) w(K2O) w(MgO) w(P2O5) w(CaO)
42.25 54.25 1.87 0.48 0.29 0.15 0.14 0.09 0.07
Tab.1 Mix proportion of geopolymer pastes %
mMK mSS mSH mPDMS mSCA mW
400 640 69 0~20 0~2 142
Tab.2 Mix proportion of geopolymer pastes g
样品编号 mPDMS /g mSCA /g mPDMS/mMK mSCA/mPDMS
H0 0 0 0
H1 4 0.16 0.01 0.04
H2.5
(H2.5-0.04)
10 0.40 0.025 0.04
H5 20 0.80 0.05 0.04
H2.5-0 10 0 0.025 0
H2.5-0.02 10 0.2 0.025 0.02
H2.5-0.1 10 1 0.025 0.1
H2.5-0.2 10 2 0.025 0.2
Tab.3 Content and mass ratio of PDMS and SCA in geopolymer pastes
Fig.1 Relationship between mSCA/mPDMS and contact angle
Fig.2 Contact angle images of specimens with different mPDMS/mMK and RWL
Fig.3 Relationship between mPDMS/mMK and contact angle
Fig.4 Relationship between RWL and contact angle
Fig.5 Schematic diagram of hydrophobic mechanism of specimens with different mPDMS/mMK before and after drying
Fig.6 Pore structure of specimens
Fig.7 SEM/BSE/EDS results of H0 and H2.5 specimens
Fig.8 DTG and TGA test results
Fig.9 Test results of mechanical strength
[1]   DUXSON P, FERNÁNDEZ-JIMÉNEZ A, PROVIS J L, et al Geopolymer technology: the current state of the art[J]. Journal of Materials Science, 2007, 42 (9): 2917- 2933
doi: 10.1007/s10853-006-0637-z
[2]   RANJBAR N, KUENZEL C, SPANGENBERG J, et al Hardening evolution of geopolymers from setting to equilibrium: a review[J]. Cement and Concrete Composites, 2020, 114: 103729
doi: 10.1016/j.cemconcomp.2020.103729
[3]   BAJPAI R, CHOUDHARY K, SRIVASTAVA A, et al Environmental impact assessment of fly ash and silica fume based geopolymer concrete[J]. Journal of Cleaner Production, 2020, 254: 120147
doi: 10.1016/j.jclepro.2020.120147
[4]   AMRAN Y H M, ALYOUSEF R, ALABDULJABBAR H, et al Clean production and properties of geopolymer concrete; a review[J]. Journal of Cleaner Production, 2020, 251: 119679
doi: 10.1016/j.jclepro.2019.119679
[5]   HALL C Water sorptivity of mortars and concretes: a review[J]. Magazine of Concrete Research, 1989, 41 (147): 51- 61
doi: 10.1680/macr.1989.41.147.51
[6]   ZHANG L W, KAI M F, CHEN X H Si-doped graphene in geopolymer: its interfacial chemical bonding, structure evolution and ultrastrong reinforcing ability[J]. Cement and Concrete Composites, 2020, 109: 103522
doi: 10.1016/j.cemconcomp.2020.103522
[7]   PARBHOO B, NAGY O Molecular dynamics in hydrogen bond forming environments. the role of hydrophilic-hydrophobic interactions in pyridine-water mixtures[J]. Journal of Molecular Structure, 1988, 177: 393- 399
doi: 10.1016/0022-2860(88)80104-2
[8]   YANG M, PAUDEL S R, ASA E Comparison of pore structure in alkali activated fly ash geopolymer and ordinary concrete due to alkali-silica reaction using micro-computed tomography[J]. Construction and Building Materials, 2020, 236: 117524
doi: 10.1016/j.conbuildmat.2019.117524
[9]   NOUSHINI A, CASTEL A, ALDRED J, et al Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete[J]. Cement and Concrete Composites, 2020, 105: 103290
doi: 10.1016/j.cemconcomp.2019.04.006
[10]   FU C, YE H, ZHU K, et al Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers[J]. Cement and Concrete Composites, 2020, 114: 103721
doi: 10.1016/j.cemconcomp.2020.103721
[11]   ARABZADEH A, CEYLAN H, KIM S, et al Superhydrophobic coatings on Portland cement concrete surfaces[J]. Construction and Building Materials, 2017, 141: 393- 401
doi: 10.1016/j.conbuildmat.2017.03.012
[12]   WANG F, LEI S, OU J, et al Superhydrophobic calcium aluminate cement with super mechanical stability[J]. Industrial and Engineering Chemistry Research, 2019, 58 (24): 10373- 10382
doi: 10.1021/acs.iecr.9b01188
[13]   SONG J, ZHAO D, HAN Z, et al Super-robust superhydrophobic concrete[J]. Journal of Materials Chemistry A, 2017, 5 (28): 14542- 14550
doi: 10.1039/C7TA03526H
[14]   喻建伟, 张朝阳, 孔祥明, 等 内掺硅烷乳液憎水剂对混凝土性能的影响[J]. 硅酸盐学报, 2021, 49 (2): 1- 9
YU Jian-wei, ZHANG Chao-yang, KONG Xiang-ming, et al Effect of silane emulsion water-repellent agent on concrete properties[J]. Journal of the Chinese Ceramic Society, 2021, 49 (2): 1- 9
[15]   CHEN Y, WANG R, WANG H, et al Study on PVA-siloxane mixed emulsion coatings for hydrophobic cement mortar[J]. Progress in Organic Coatings, 2020, 147: 105775
doi: 10.1016/j.porgcoat.2020.105775
[16]   YANG C, WANG F, LI W, et al Anti-icing properties of superhydrophobic ZnO/PDMS composite coating[J]. Applied Physics A, 2016, 122 (1): 1- 10
doi: 10.1007/s00339-015-9525-1
[17]   WANG F, LEI S, OU J, et al Effect of PDMS on the waterproofing performance and corrosion resistance of cement mortar[J]. Applied Surface Science, 2020, 507: 145016
doi: 10.1016/j.apsusc.2019.145016
[18]   LI R, HOU P, XIE N, et al Design of SiO2/PMHS hybrid nanocomposite for surface treatment of cement-based materials [J]. Cement and Concrete Composites, 2018, 87: 89- 97
doi: 10.1016/j.cemconcomp.2017.12.008
[19]   WANG F, XIE T, LEI S, et al Preparation and properties of foundry dust/Portland cement based composites and superhydrophobic coatings[J]. Construction and Building Materials, 2020, 246: 118466
doi: 10.1016/j.conbuildmat.2020.118466
[20]   SONG J, LI Y, XU W, et al Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion[J]. Journal of Colloid and Interface Science, 2019, 541: 86- 92
doi: 10.1016/j.jcis.2019.01.014
[21]   ZHANG P, ZHENG Y, WANG K, et al A review on properties of fresh and hardened geopolymer mortar[J]. Composites Part B:Engineering, 2018, 152: 79- 95
doi: 10.1016/j.compositesb.2018.06.031
[22]   XIE Y, HILL C A S, XIAO Z, et al Silane coupling agents used for natural fiber/polymer composites: a review[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41 (7): 806- 819
doi: 10.1016/j.compositesa.2010.03.005
[23]   CHANDLER D Hydrophobicity: two faces of water[J]. Nature, 2002, 417 (6888): 491
doi: 10.1038/417491a
[24]   ANOOP V, SANKARAIAH S, MARY N L Development of an optically transparent polysilsesquioxane/PDMS addition cured nanocomposite adhesive for electronic applications[J]. New Journal of Chemistry, 2019, 43 (41): 16322- 16330
doi: 10.1039/C9NJ04092G
[25]   江雷 从自然到仿生的超疏水纳米界面材料[J]. 科技导报, 2005, 23 (2): 4- 8
JIANG Lei Super-hydrophobic nano-interface materials from natural to bionic[J]. Science and Technology Review, 2005, 23 (2): 4- 8
doi: 10.3321/j.issn:1000-7857.2005.02.002
[26]   刘贵昌, 苏本泽, 王立达, 等 混凝土表面硅烷改性后的防腐蚀性能[J]. 腐蚀与防护, 2012, 33 (12): 1087- 1090
LIU Gui-chang, SU Ben-ze, WANG Li-da, et al Anti-corrosion performance of concrete surface modified by silane[J]. Corrosion and Protection, 2012, 33 (12): 1087- 1090
[27]   NAMOULNIARA K, MAHIEUX P, LUX J, et al Efficiency of water repellent surface treatment: experiments on low performance concrete and numerical investigation with pore network model[J]. Construction and Building Materials, 2019, 227: 116638
doi: 10.1016/j.conbuildmat.2019.08.019
[28]   TITTARELLI F, MORICONI G Comparison between surface and bulk hydrophobic treatment against corrosion of galvanized reinforcing steel in concrete[J]. Cement and Concrete Research, 2011, 41 (6): 609- 614
doi: 10.1016/j.cemconres.2011.03.011
[29]   BOSE S, SAHA S K Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique[J]. Chemistry of Materials, 2003, 15 (23): 4464- 4469
doi: 10.1021/cm0303437
[30]   BENAVENTE D, LOCK P, ÁNGELES GARCÍA DEL CURA M, et al Predicting the capillary imbibition of porous rocks from microstructure[J]. Transport in Porous Media, 2002, 49 (1): 59- 76
doi: 10.1023/A:1016047122877
[31]   POUHET R, CYR M Carbonation in the pore solution of metakaolin-based geopolymer[J]. Cement and Concrete Research, 2016, 88: 227- 235
doi: 10.1016/j.cemconres.2016.05.008
[32]   ALARCON-RUIZ L, PLATRET G, MASSIEU E, et al The use of thermal analysis in assessing the effect of temperature on a cement paste[J]. Cement and Concrete Research, 2005, 35 (3): 609- 613
doi: 10.1016/j.cemconres.2004.06.015
[33]   NOCHAIYA T, WONGKEO W, PIMRAKSA K, et al Microstructural, physical, and thermal analyses of Portland cement-fly ash-calcium hydroxide blended pastes[J]. Journal of Thermal Analysis and Calorimetry, 2010, 100 (1): 101- 108
doi: 10.1007/s10973-009-0491-8
[34]   ISMAIL I, BERNAL S A, PROVIS J L, et al Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Composites, 2014, 45: 125- 135
doi: 10.1016/j.cemconcomp.2013.09.006
[35]   QU Z, YU Q, JI Y, et al Mitigating shrinkage of alkali activated slag with biofilm[J]. Cement and Concrete Research, 2020, 138: 106234
doi: 10.1016/j.cemconres.2020.106234
[36]   BARBOSA V F F, MACKENZIE K J D, THAUMATURGO C Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers[J]. International Journal of Inorganic Materials, 2000, 2 (4): 309- 317
doi: 10.1016/S1466-6049(00)00041-6
[37]   PROVIS J L Geopolymers and other alkali activated materials: why, how, and what?[J]. Materials and Structures, 2014, 47 (1/2): 11- 25
[38]   ZHU X, YAN D, FANG H, et al Early-stage geopolymerization revealed by 27Al and 29Si nuclear magnetic resonance spectroscopy based on vacuum dehydration [J]. Construction and Building Materials, 2021, 266: 121114
doi: 10.1016/j.conbuildmat.2020.121114
[39]   RUAN S, CHEN S, ZHU X, et al Matrix wettability and mechanical properties of geopolymer cement-polydimethylsiloxane (PDMS) hybrids[J]. Cement and Concrete Composites, 2021, 124: 104268
doi: 10.1016/j.cemconcomp.2021.104268
[1] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[2] Qing-pan KONG,Xian-bing JI,Ru-hong ZHOU,Tian-ya YOU,Jin-liang XU. Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1022-1028.
[3] Lei ZHANG,Hai-jun XU,Teng-an ZOU,Xiao-jun XU,Yu-kang CHANG. Modeling and property analysis of underwater vector propulsion system based on nested Z-shafts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 450-458.
[4] Zhi-qiang WU,Jun WEI,Rong-zhen DONG. Graphene-based piezoresistive composite and application in crack monitoring[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 233-240.
[5] Song-lin YU,Han KE,Liang-tong ZHAN,Tao MENG,Yun-min CHEN,Ce YANG. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2364-2376.
[6] DAI Chao, JI Xian-bing, ZHOU Dong-dong, WANG Ye, XU Jin-liang. Behavioral characteristics of droplet collision to different wettability surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 36-42.
[7] LI Qiang, JIN Xian yu. Effect of stirrup corrosion on bearing capacity of uniaxial compression short column[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1929-1938.
[8] TUN Feng, ZHANG Hua-Jun, QIU Li-Min, et al. Nucleation characteristics of nano-additives in binary ice thermal storage system[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(09): 1668-1671.